You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Comrad/p2p/crypto.py

295 lines
8.2 KiB
Python

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography.exceptions import InvalidSignature
import os
try:
from .syfr import * #import syfr
except ImportError:
from syfr import *
key_dir = os.path.join(os.path.expanduser('~'),'.keys','komrade')
if not os.path.exists(key_dir): os.makedirs(key_dir)
PATH_PRIVATE_KEY=os.path.join(key_dir,'private_key.pem')
PATH_PUBLIC_KEY=os.path.join(key_dir,'public_key.pem')
### CREATING KEYS
def new_keys(save=True,password=None):
private_key = rsa.generate_private_key(
public_exponent=65537,
key_size=2048,
backend=default_backend()
)
public_key = private_key.public_key()
if save:
save_private_key(private_key,password=password)
save_public_key(public_key)
return private_key,public_key
def save_private_key(private_key,fn=PATH_PRIVATE_KEY,password=None, return_instead=False):
pem = private_key.private_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.PKCS8,
encryption_algorithm=serialization.NoEncryption() if not password else serialization.BestAvailableEncryption(password.encode())
)
if return_instead: return pem
with open(fn,'wb') as f: f.write(pem)
def save_public_key(public_key,fn=PATH_PUBLIC_KEY,return_instead=False):
pem = public_key.public_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PublicFormat.SubjectPublicKeyInfo
)
if return_instead: return pem
with open(fn,'wb') as f: f.write(pem)
### LOADING KEYS
def load_keys():
return (load_private_key_from_file(), load_public_key_from_file())
def load_private_key(pem,password=None):
return serialization.load_pem_private_key(
pem,
password=password.encode() if password else None,
backend=default_backend()
)
def load_private_key_from_file(fn=PATH_PRIVATE_KEY,password=None):
with open(fn, "rb") as key_file:
return load_private_key(key_file.read(), password)
def load_public_key(pem):
return serialization.load_pem_public_key(
pem,
backend=default_backend()
)
def load_public_key_from_file(fn=PATH_PUBLIC_KEY):
with open(fn, "rb") as key_file:
return load_public_key(key_file.read())
### DE/ENCRYPTING
def encrypt_msg(message, public_key):
return public_key.encrypt(
message,
padding.OAEP(
mgf=padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None
)
)
def encrypt_msg_symmetric(message):
import os
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
backend = default_backend()
key = os.urandom(32)
iv = os.urandom(16)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
encryptor = cipher.encryptor()
ct = encryptor.update(message) + encryptor.finalize()
return ct
def decrypt_msg_symmetric():
import os
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
backend = default_backend()
key = os.urandom(32)
iv = os.urandom(16)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
return ct
decryptor = cipher.decryptor()
decryptor.update(ct) + decryptor.finalize()
b'a secret message'
def decrypt_msg(encrypted, private_key):
return private_key.decrypt(
encrypted,
padding.OAEP(
mgf=padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None
)
)
### SIGNING/VERIFYING
def sign_msg(message, private_key):
return private_key.sign(
message,
padding.PSS(
mgf=padding.MGF1(hashes.SHA256()),
salt_length=padding.PSS.MAX_LENGTH
),
hashes.SHA256()
)
def verify_msg(message, signature, public_key):
try:
verified = public_key.verify(
signature,
message,
padding.PSS(
mgf=padding.MGF1(hashes.SHA256()),
salt_length=padding.PSS.MAX_LENGTH
),
hashes.SHA256()
)
return True
except InvalidSignature:
return False
return None
# #private_key,public_key = new_keys()
# private_key,public_key = load_keys()
# #print(private_key)
# #print(public_key)
# #enc = encrypt_msg('Drive your plow over the bones of the dead', public_key)
# #print(enc)
# dec = decrypt_msg(enc,private_key)
# #print(dec)
# msg = b'hello'
# signature = sign_msg(msg,private_key)
# #print(encrypt_msg(b'hello',public_key))
# print(verify_msg(msg+b'!!',signature,public_key))
## ONLY NEEDS RUN ONCE!
def gen_global_keys1(fn='.keys.global.json'):
from kivy.storage.jsonstore import JsonStore
private_key,public_key=new_keys(save=False,password=None)
pem_private_key = save_private_key(private_key,password=None,return_instead=True)
pem_public_key = save_public_key(public_key,return_instead=True)
store = JsonStore('./.keys.global.json')
store.put('_keys',private=str(pem_private_key.decode()),public=str(pem_public_key.decode())) #(private_key,password=passkey)
def gen_global_keys(fn='.keys.global.json'):
from kivy.storage.jsonstore import JsonStore
store = JsonStore('./.keys.global.json')
#store.put('_keys',private=str(pem_private_key.decode()),public=str(pem_public_key.decode())) #(private_key,password=passkey)
private_key = generate_rsa_key()
pem_private_key = serialize_privkey(private_key, password=None)# save_private_key(private_key,password=passkey,return_instead=True)
pem_public_key = serialize_pubkey(private_key.public_key())
store.put('_keys',private=pem_private_key.decode(),public=pem_public_key.decode()) #(private_key,password=passkey)
"""
import os
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
backend = default_backend()
key = os.urandom(32)
iv = os.urandom(16)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
encryptor = cipher.encryptor()
ct = encryptor.update(b"a secret message") + encryptor.finalize()
decryptor = cipher.decryptor()
decryptor.update(ct) + decryptor.finalize()
b'a secret message'"""
def aes_rsa_encrypt(message, recipient_rsa_pub):
aes_key = create_aes_key()
aes_ciphertext, iv = aes_encrypt(message, aes_key)
encry_aes_key = rsa_encrypt(aes_key, recipient_rsa_pub)
return aes_ciphertext, encry_aes_key, iv #, sign
def aes_rsa_decrypt(aes_ciphertext, rsa_priv, encry_aes_key, iv): #, hmac, hmac_signature, rsa_priv, iv, metadata):
aes_key = rsa_decrypt(encry_aes_key, rsa_priv)
plaintext = aes_decrypt(aes_ciphertext, aes_key, iv)
return plaintext
# def _decrypt_rsa(x,privkey=CORRECT_PRIV_KEY):
# x_decr = rsa_decrypt(x,privkey)
# return x_decr
# encrypt sender
#def _enc_sender(x):
# recv=receiver_pubkey
# encrypt recipient too?
# sender_pubkey_b_encr = sep2.join(
# aes_rsa_encrypt(
# serialize_pubkey(self.public_key), receiver_pubkey
# )
# )
# receiver_pubkey_b_encr = sep2.join(
# aes_rsa_encrypt(
# serialize_pubkey(receiver_pubkey_b, receiver_pubkey
# )
# )
# msg_encr = sep2.join([val_encr,val_encr_key,iv])
# sender_encr = sep2.join(
# aes_rsa_encrypt(
# serialize_pubkey(self.public_key), receiver_pubkey
# )
# )
# signature_encr = sep2.join(
# rsa_encrypt(
# signature,
# receiver_pubkey
# )
# )
# sender = sep2.join(sender_pubkey_b, signature)
# WDV = sep.join([
# time_b,
# receiver_encr,
# msg_encr,
# sender_encr,
# signature_encr
# ])
def simple_lock_test(privkey,pubkey):
return privkey.public_key().public_numbers() == pubkey.public_numbers()