You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenTTD-patches/src/newgrf_spritegroup.cpp

661 lines
23 KiB
C++

/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file newgrf_spritegroup.cpp Handling of primarily NewGRF action 2. */
#include "stdafx.h"
#include "debug.h"
#include "newgrf_spritegroup.h"
#include "newgrf_profiling.h"
#include "core/pool_func.hpp"
#include "vehicle_type.h"
#include "newgrf_cache_check.h"
#include "string_func.h"
#include "safeguards.h"
SpriteGroupPool _spritegroup_pool("SpriteGroup");
INSTANTIATE_POOL_METHODS(SpriteGroup)
TemporaryStorageArray<int32, 0x110> _temp_store;
/**
* ResolverObject (re)entry point.
* This cannot be made a call to a virtual function because virtual functions
* do not like nullptr and checking for nullptr *everywhere* is more cumbersome than
* this little helper function.
* @param group the group to resolve for
* @param object information needed to resolve the group
* @param top_level true if this is a top-level SpriteGroup, false if used nested in another SpriteGroup.
* @return the resolved group
*/
/* static */ const SpriteGroup *SpriteGroup::Resolve(const SpriteGroup *group, ResolverObject &object, bool top_level)
{
if (group == nullptr) return nullptr;
const GRFFile *grf = object.grffile;
auto profiler = std::find_if(_newgrf_profilers.begin(), _newgrf_profilers.end(), [&](const NewGRFProfiler &pr) { return pr.grffile == grf; });
if (profiler == _newgrf_profilers.end() || !profiler->active) {
if (top_level) _temp_store.ClearChanges();
return group->Resolve(object);
} else if (top_level) {
profiler->BeginResolve(object);
_temp_store.ClearChanges();
const SpriteGroup *result = group->Resolve(object);
profiler->EndResolve(result);
return result;
} else {
profiler->RecursiveResolve();
return group->Resolve(object);
}
}
static inline uint32 GetVariable(const ResolverObject &object, ScopeResolver *scope, uint16 variable, uint32 parameter, GetVariableExtra *extra)
{
uint32 value;
switch (variable) {
case 0x0C: return object.callback;
case 0x10: return object.callback_param1;
case 0x18: return object.callback_param2;
case 0x1C: return object.last_value;
case 0x5F: return (scope->GetRandomBits() << 8) | scope->GetTriggers();
case 0x7D: return _temp_store.GetValue(parameter);
case 0x7F:
if (object.grffile == nullptr) return 0;
return object.grffile->GetParam(parameter);
default:
/* First handle variables common with Action7/9/D */
if (variable < 0x40 && GetGlobalVariable(variable, &value, object.grffile)) return value;
/* Not a common variable, so evaluate the feature specific variables */
return scope->GetVariable(variable, parameter, extra);
}
}
/**
* Get a few random bits. Default implementation has no random bits.
* @return Random bits.
*/
/* virtual */ uint32 ScopeResolver::GetRandomBits() const
{
return 0;
}
/**
* Get the triggers. Base class returns \c 0 to prevent trouble.
* @return The triggers.
*/
/* virtual */ uint32 ScopeResolver::GetTriggers() const
{
return 0;
}
/**
* Get a variable value. Default implementation has no available variables.
* @param variable Variable to read
* @param parameter Parameter for 60+x variables
* @param[out] available Set to false, in case the variable does not exist.
* @return Value
*/
/* virtual */ uint32 ScopeResolver::GetVariable(uint16 variable, uint32 parameter, GetVariableExtra *extra) const
{
DEBUG(grf, 1, "Unhandled scope variable 0x%X", variable);
extra->available = false;
return UINT_MAX;
}
/**
* Store a value into the persistent storage area (PSA). Default implementation does nothing (for newgrf classes without storage).
* @param reg Position to store into.
* @param value Value to store.
*/
/* virtual */ void ScopeResolver::StorePSA(uint reg, int32 value) {}
/**
* Get the real sprites of the grf.
* @param group Group to get.
* @return The available sprite group.
*/
/* virtual */ const SpriteGroup *ResolverObject::ResolveReal(const RealSpriteGroup *group) const
{
if (!group->loaded.empty()) return group->loaded[0];
if (!group->loading.empty()) return group->loading[0];
return nullptr;
}
/**
* Get a resolver for the \a scope.
* @param scope Scope to return.
* @param relative Additional parameter for #VSG_SCOPE_RELATIVE.
* @return The resolver for the requested scope.
*/
/* virtual */ ScopeResolver *ResolverObject::GetScope(VarSpriteGroupScope scope, byte relative)
{
return &this->default_scope;
}
/* Evaluate an adjustment for a variable of the given size.
* U is the unsigned type and S is the signed type to use. */
template <typename U, typename S>
static U EvalAdjustT(const DeterministicSpriteGroupAdjust &adjust, ScopeResolver *scope, U last_value, uint32 value)
{
value >>= adjust.shift_num;
value &= adjust.and_mask;
switch (adjust.type) {
case DSGA_TYPE_DIV: value = ((S)value + (S)adjust.add_val) / (S)adjust.divmod_val; break;
case DSGA_TYPE_MOD: value = ((S)value + (S)adjust.add_val) % (S)adjust.divmod_val; break;
case DSGA_TYPE_NONE: break;
}
switch (adjust.operation) {
case DSGA_OP_ADD: return last_value + value;
case DSGA_OP_SUB: return last_value - value;
case DSGA_OP_SMIN: return std::min<S>(last_value, value);
case DSGA_OP_SMAX: return std::max<S>(last_value, value);
case DSGA_OP_UMIN: return std::min<U>(last_value, value);
case DSGA_OP_UMAX: return std::max<U>(last_value, value);
case DSGA_OP_SDIV: return value == 0 ? (S)last_value : (S)last_value / (S)value;
case DSGA_OP_SMOD: return value == 0 ? (S)last_value : (S)last_value % (S)value;
case DSGA_OP_UDIV: return value == 0 ? (U)last_value : (U)last_value / (U)value;
case DSGA_OP_UMOD: return value == 0 ? (U)last_value : (U)last_value % (U)value;
case DSGA_OP_MUL: return last_value * value;
case DSGA_OP_AND: return last_value & value;
case DSGA_OP_OR: return last_value | value;
case DSGA_OP_XOR: return last_value ^ value;
case DSGA_OP_STO: _temp_store.StoreValue((U)value, (S)last_value); return last_value;
case DSGA_OP_RST: return value;
case DSGA_OP_STOP: scope->StorePSA((U)value, (S)last_value); return last_value;
case DSGA_OP_ROR: return ROR<uint32>((U)last_value, (U)value & 0x1F); // mask 'value' to 5 bits, which should behave the same on all architectures.
case DSGA_OP_SCMP: return ((S)last_value == (S)value) ? 1 : ((S)last_value < (S)value ? 0 : 2);
case DSGA_OP_UCMP: return ((U)last_value == (U)value) ? 1 : ((U)last_value < (U)value ? 0 : 2);
case DSGA_OP_SHL: return (uint32)(U)last_value << ((U)value & 0x1F); // Same behaviour as in ParamSet, mask 'value' to 5 bits, which should behave the same on all architectures.
case DSGA_OP_SHR: return (uint32)(U)last_value >> ((U)value & 0x1F);
case DSGA_OP_SAR: return (int32)(S)last_value >> ((U)value & 0x1F);
default: return value;
}
}
static bool RangeHighComparator(const DeterministicSpriteGroupRange& range, uint32 value)
{
return range.high < value;
}
const SpriteGroup *DeterministicSpriteGroup::Resolve(ResolverObject &object) const
{
uint32 last_value = 0;
uint32 value = 0;
ScopeResolver *scope = object.GetScope(this->var_scope);
for (const auto &adjust : this->adjusts) {
/* Try to get the variable. We shall assume it is available, unless told otherwise. */
GetVariableExtra extra(adjust.and_mask << adjust.shift_num);
if (adjust.variable == 0x7E) {
const SpriteGroup *subgroup = SpriteGroup::Resolve(adjust.subroutine, object, false);
if (subgroup == nullptr) {
value = CALLBACK_FAILED;
} else {
value = subgroup->GetCallbackResult();
}
/* Note: 'last_value' and 'reseed' are shared between the main chain and the procedure */
} else if (adjust.variable == 0x7B) {
_sprite_group_resolve_check_veh_check = false;
value = GetVariable(object, scope, adjust.parameter, last_value, &extra);
} else {
value = GetVariable(object, scope, adjust.variable, adjust.parameter, &extra);
}
if (!extra.available) {
/* Unsupported variable: skip further processing and return either
* the group from the first range or the default group. */
return SpriteGroup::Resolve(this->error_group, object, false);
}
switch (this->size) {
case DSG_SIZE_BYTE: value = EvalAdjustT<uint8, int8> (adjust, scope, last_value, value); break;
case DSG_SIZE_WORD: value = EvalAdjustT<uint16, int16>(adjust, scope, last_value, value); break;
case DSG_SIZE_DWORD: value = EvalAdjustT<uint32, int32>(adjust, scope, last_value, value); break;
default: NOT_REACHED();
}
last_value = value;
}
object.last_value = last_value;
if (this->calculated_result) {
/* nvar == 0 is a special case -- we turn our value into a callback result */
if (value != CALLBACK_FAILED) value = GB(value, 0, 15);
static CallbackResultSpriteGroup nvarzero(0, true);
nvarzero.result = value;
return &nvarzero;
}
if (this->ranges.size() > 4) {
const auto &lower = std::lower_bound(this->ranges.begin(), this->ranges.end(), value, RangeHighComparator);
if (lower != this->ranges.end() && lower->low <= value) {
assert(lower->low <= value && value <= lower->high);
return SpriteGroup::Resolve(lower->group, object, false);
}
} else {
for (const auto &range : this->ranges) {
if (range.low <= value && value <= range.high) {
return SpriteGroup::Resolve(range.group, object, false);
}
}
}
return SpriteGroup::Resolve(this->default_group, object, false);
}
void DeterministicSpriteGroup::AnalyseCallbacks(AnalyseCallbackOperation &op) const
{
auto res = op.seen.insert(this);
if (!res.second) {
/* Already seen this group */
return;
}
auto check_1A_range = [&]() -> bool {
if (this->adjusts.size() == 1 && this->adjusts[0].variable == 0x1A) {
/* Not clear why some GRFs do this, perhaps a way of commenting out a branch */
uint32 value = 0;
switch (this->size) {
case DSG_SIZE_BYTE: value = EvalAdjustT<uint8, int8> (this->adjusts[0], nullptr, 0, UINT_MAX); break;
case DSG_SIZE_WORD: value = EvalAdjustT<uint16, int16>(this->adjusts[0], nullptr, 0, UINT_MAX); break;
case DSG_SIZE_DWORD: value = EvalAdjustT<uint32, int32>(this->adjusts[0], nullptr, 0, UINT_MAX); break;
default: NOT_REACHED();
}
for (const auto &range : this->ranges) {
if (range.low <= value && value <= range.high) {
if (range.group != nullptr) range.group->AnalyseCallbacks(op);
return true;
}
}
if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op);
return true;
}
return false;
};
if (op.mode == ACOM_FIND_CB_RESULT) {
if (this->calculated_result) {
op.cb_result_found = true;
return;
} else if (!op.cb_result_found) {
if (check_1A_range()) return;
if (this->adjusts.size() == 1 && this->adjusts[0].variable == 0xC) {
const auto &adjust = this->adjusts[0];
if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) {
for (const auto &range : this->ranges) {
if (range.low == range.high && range.low == 0xC) {
if (range.group != nullptr) range.group->AnalyseCallbacks(op);
return;
}
}
if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op);
return;
}
}
for (const auto &range : this->ranges) {
if (range.group != nullptr) range.group->AnalyseCallbacks(op);
}
if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op);
}
return;
}
if (check_1A_range()) return;
auto find_cb_result = [&]() -> bool {
if (this->calculated_result) return true;
AnalyseCallbackOperation cbr_op;
cbr_op.mode = ACOM_FIND_CB_RESULT;
for (const auto &range : this->ranges) {
if (range.group != nullptr) range.group->AnalyseCallbacks(cbr_op);
}
if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(cbr_op);
return cbr_op.cb_result_found;
};
if (this->adjusts.size() == 1 && !this->calculated_result) {
const auto &adjust = this->adjusts[0];
if (op.mode == ACOM_CB_VAR && adjust.variable == 0xC) {
if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) {
for (const auto &range : this->ranges) {
if (range.low == range.high) {
switch (range.low) {
case CBID_VEHICLE_32DAY_CALLBACK:
op.callbacks_used |= SGCU_VEHICLE_32DAY_CALLBACK;
break;
case CBID_VEHICLE_REFIT_COST:
op.callbacks_used |= SGCU_VEHICLE_REFIT_COST;
break;
case CBID_RANDOM_TRIGGER:
op.callbacks_used |= SGCU_RANDOM_TRIGGER;
break;
case CBID_VEHICLE_MODIFY_PROPERTY:
if (range.group != nullptr) {
AnalyseCallbackOperation cb36_op;
cb36_op.mode = ACOM_CB36_PROP;
range.group->AnalyseCallbacks(cb36_op);
op.properties_used |= cb36_op.properties_used;
}
break;
}
} else {
if (range.group != nullptr) range.group->AnalyseCallbacks(op);
}
}
if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op);
return;
}
}
if (op.mode == ACOM_CB36_PROP && adjust.variable == 0x10) {
if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) {
for (const auto &range : this->ranges) {
if (range.low == range.high) {
if (range.low < 64) {
if (find_cb_result()) SetBit(op.properties_used, range.low);
}
} else {
if (range.group != nullptr) range.group->AnalyseCallbacks(op);
}
}
if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op);
return;
}
}
if (op.mode == ACOM_CB36_PROP && adjust.variable == 0xC) {
if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) {
for (const auto &range : this->ranges) {
if (range.low <= CBID_VEHICLE_MODIFY_PROPERTY && CBID_VEHICLE_MODIFY_PROPERTY <= range.high) {
if (range.group != nullptr) range.group->AnalyseCallbacks(op);
return;
}
}
if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op);
return;
}
}
}
for (const auto &adjust : this->adjusts) {
if (op.mode == ACOM_CB_VAR && adjust.variable == 0xC) {
op.callbacks_used |= SGCU_ALL;
}
if (op.mode == ACOM_CB36_PROP && adjust.variable == 0x10) {
if (find_cb_result()) {
op.properties_used |= UINT64_MAX;
}
}
if (adjust.variable == 0x7E && adjust.subroutine != nullptr) {
adjust.subroutine->AnalyseCallbacks(op);
}
}
if (!this->calculated_result) {
for (const auto &range : this->ranges) {
if (range.group != nullptr) range.group->AnalyseCallbacks(op);
}
if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op);
}
}
void CallbackResultSpriteGroup::AnalyseCallbacks(AnalyseCallbackOperation &op) const
{
if (op.mode == ACOM_FIND_CB_RESULT) op.cb_result_found = true;
}
const SpriteGroup *RandomizedSpriteGroup::Resolve(ResolverObject &object) const
{
ScopeResolver *scope = object.GetScope(this->var_scope, this->count);
if (object.callback == CBID_RANDOM_TRIGGER) {
/* Handle triggers */
byte match = this->triggers & object.waiting_triggers;
bool res = (this->cmp_mode == RSG_CMP_ANY) ? (match != 0) : (match == this->triggers);
if (res) {
object.used_triggers |= match;
object.reseed[this->var_scope] |= (this->groups.size() - 1) << this->lowest_randbit;
}
}
uint32 mask = ((uint)this->groups.size() - 1) << this->lowest_randbit;
byte index = (scope->GetRandomBits() & mask) >> this->lowest_randbit;
return SpriteGroup::Resolve(this->groups[index], object, false);
}
void RandomizedSpriteGroup::AnalyseCallbacks(AnalyseCallbackOperation &op) const
{
if (op.mode == ACOM_CB_VAR) op.callbacks_used |= SGCU_RANDOM_TRIGGER;
}
const SpriteGroup *RealSpriteGroup::Resolve(ResolverObject &object) const
{
return object.ResolveReal(this);
}
/**
* Process registers and the construction stage into the sprite layout.
* The passed construction stage might get reset to zero, if it gets incorporated into the layout
* during the preprocessing.
* @param[in,out] stage Construction stage (0-3), or nullptr if not applicable.
* @return sprite layout to draw.
*/
const DrawTileSprites *TileLayoutSpriteGroup::ProcessRegisters(uint8 *stage) const
{
if (!this->dts.NeedsPreprocessing()) {
if (stage != nullptr && this->dts.consistent_max_offset > 0) *stage = GetConstructionStageOffset(*stage, this->dts.consistent_max_offset);
return &this->dts;
}
static DrawTileSprites result;
uint8 actual_stage = stage != nullptr ? *stage : 0;
this->dts.PrepareLayout(0, 0, 0, actual_stage, false);
this->dts.ProcessRegisters(0, 0, false);
result.seq = this->dts.GetLayout(&result.ground);
/* Stage has been processed by PrepareLayout(), set it to zero. */
if (stage != nullptr) *stage = 0;
return &result;
}
struct SpriteGroupDumper {
private:
char buffer[1024];
std::function<void(const char *)> print_fn;
const SpriteGroup *top_default_group = nullptr;
btree::btree_set<const DeterministicSpriteGroup *> seen_dsgs;
void print() { this->print_fn(this->buffer); }
enum SpriteGroupDumperFlags {
SGDF_DEFAULT = 1 << 0,
};
public:
SpriteGroupDumper(std::function<void(const char *)> print) : print_fn(print) {}
void DumpSpriteGroup(const SpriteGroup *sg, int padding, uint flags);
};
static const char *_dsg_op_names[] {
"ADD",
"SUB",
"SMIN",
"SMAX",
"UMIN",
"UMAX",
"SDIV",
"SMOD",
"UDIV",
"UMOD",
"MUL",
"AND",
"OR",
"XOR",
"STO",
"RST",
"STOP",
"ROR",
"SCMP",
"UCMP",
"SHL",
"SHR",
"SAR",
};
static_assert(lengthof(_dsg_op_names) == DSGA_OP_END);
static const char *_sg_scope_names[] {
"SELF",
"PARENT",
"RELATIVE",
};
static_assert(lengthof(_sg_scope_names) == VSG_END);
static const char *_sg_size_names[] {
"BYTE",
"WORD",
"DWORD",
};
void SpriteGroupDumper::DumpSpriteGroup(const SpriteGroup *sg, int padding, uint flags)
{
if (sg == nullptr) {
seprintf(this->buffer, lastof(this->buffer), "%*sNULL GROUP", padding, "");
this->print();
return;
}
switch (sg->type) {
case SGT_REAL: {
const RealSpriteGroup *rsg = (const RealSpriteGroup*)sg;
seprintf(this->buffer, lastof(this->buffer), "%*sReal (loaded: %u, loading: %u) [%u]",
padding, "", (uint)rsg->loaded.size(), (uint)rsg->loading.size(), sg->nfo_line);
this->print();
for (size_t i = 0; i < rsg->loaded.size(); i++) {
seprintf(this->buffer, lastof(this->buffer), "%*sLoaded %u", padding + 2, "", (uint)i);
this->print();
this->DumpSpriteGroup(rsg->loaded[i], padding + 4, 0);
}
for (size_t i = 0; i < rsg->loading.size(); i++) {
seprintf(this->buffer, lastof(this->buffer), "%*sLoading %u", padding + 2, "", (uint)i);
this->print();
this->DumpSpriteGroup(rsg->loading[i], padding + 4, 0);
}
break;
}
case SGT_DETERMINISTIC: {
const DeterministicSpriteGroup *dsg = (const DeterministicSpriteGroup*)sg;
if (padding == 0 && !dsg->calculated_result && dsg->default_group != nullptr) {
this->top_default_group = dsg->default_group;
}
if (dsg == this->top_default_group && !(padding == 4 && (flags & SGDF_DEFAULT))) {
seprintf(this->buffer, lastof(this->buffer), "%*sTOP LEVEL DEFAULT GROUP: Deterministic (%s, %s), [%u]",
padding, "", _sg_scope_names[dsg->var_scope], _sg_size_names[dsg->size], dsg->nfo_line);
this->print();
return;
}
auto res = this->seen_dsgs.insert(dsg);
if (!res.second) {
seprintf(this->buffer, lastof(this->buffer), "%*sGROUP SEEN ABOVE: Deterministic (%s, %s), [%u]",
padding, "", _sg_scope_names[dsg->var_scope], _sg_size_names[dsg->size], dsg->nfo_line);
this->print();
return;
}
seprintf(this->buffer, lastof(this->buffer), "%*sDeterministic (%s, %s), [%u]",
padding, "", _sg_scope_names[dsg->var_scope], _sg_size_names[dsg->size], dsg->nfo_line);
this->print();
padding += 2;
for (const auto &adjust : dsg->adjusts) {
char *p = this->buffer;
p += seprintf(p, lastof(this->buffer), "%*svar: %X", padding, "", adjust.variable);
if (adjust.variable >= 0x100) {
extern const GRFVariableMapDefinition _grf_action2_remappable_variables[];
for (const GRFVariableMapDefinition *info = _grf_action2_remappable_variables; info->name != nullptr; info++) {
if (adjust.variable == info->id) {
p += seprintf(p, lastof(this->buffer), " (%s)", info->name);
break;
}
}
}
if ((adjust.variable >= 0x60 && adjust.variable <= 0x7F) || adjust.parameter != 0) p += seprintf(p, lastof(this->buffer), " (parameter: %X)", adjust.parameter);
p += seprintf(p, lastof(this->buffer), ", shift: %X, and: %X", adjust.shift_num, adjust.and_mask);
switch (adjust.type) {
case DSGA_TYPE_DIV: p += seprintf(p, lastof(this->buffer), ", add: %X, div: %X", adjust.add_val, adjust.divmod_val); break;
case DSGA_TYPE_MOD: p += seprintf(p, lastof(this->buffer), ", add: %X, mod: %X", adjust.add_val, adjust.divmod_val); break;
case DSGA_TYPE_NONE: break;
}
p += seprintf(p, lastof(this->buffer), ", op: %X (%s)", adjust.operation, adjust.operation < DSGA_OP_END ? _dsg_op_names[adjust.operation] : "???");
this->print();
}
if (dsg->calculated_result) {
seprintf(this->buffer, lastof(this->buffer), "%*scalculated_result", padding, "");
this->print();
} else {
for (const auto &range : dsg->ranges) {
seprintf(this->buffer, lastof(this->buffer), "%*srange: %X -> %X", padding, "", range.low, range.high);
this->print();
this->DumpSpriteGroup(range.group, padding + 2, 0);
}
if (dsg->default_group != nullptr) {
seprintf(this->buffer, lastof(this->buffer), "%*sdefault", padding, "");
this->print();
this->DumpSpriteGroup(dsg->default_group, padding + 2, SGDF_DEFAULT);
}
}
break;
}
case SGT_RANDOMIZED: {
const RandomizedSpriteGroup *rsg = (const RandomizedSpriteGroup*)sg;
seprintf(this->buffer, lastof(this->buffer), "%*sRandom (%s, %s, triggers: %X, count: %X, lowest_randbit: %X, groups: %u) [%u]",
padding, "", _sg_scope_names[rsg->var_scope], rsg->cmp_mode == RSG_CMP_ANY ? "ANY" : "ALL",
rsg->triggers, rsg->count, rsg->lowest_randbit, (uint)rsg->groups.size(), rsg->nfo_line);
this->print();
for (const auto &group : rsg->groups) {
this->DumpSpriteGroup(group, padding + 2, 0);
}
break;
}
case SGT_CALLBACK:
seprintf(this->buffer, lastof(this->buffer), "%*sCallback Result: %X", padding, "", ((const CallbackResultSpriteGroup *) sg)->result);
this->print();
break;
case SGT_RESULT:
seprintf(this->buffer, lastof(this->buffer), "%*sSprite Result: SpriteID: %u, num: %u",
padding, "", ((const ResultSpriteGroup *) sg)->sprite, ((const ResultSpriteGroup *) sg)->num_sprites);
this->print();
break;
case SGT_TILELAYOUT:
seprintf(this->buffer, lastof(this->buffer), "%*sTile Layout [%u]", padding, "", sg->nfo_line);
this->print();
break;
case SGT_INDUSTRY_PRODUCTION:
seprintf(this->buffer, lastof(this->buffer), "%*sIndustry Production [%u]", padding, "", sg->nfo_line);
this->print();
break;
}
}
void DumpSpriteGroup(const SpriteGroup *sg, std::function<void(const char *)> print)
{
SpriteGroupDumper dumper(std::move(print));
dumper.DumpSpriteGroup(sg, 0, 0);
}