You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenTTD-patches/src/ai/trolly/trolly.h

344 lines
12 KiB
C

/* $Id$ */
/** @file trolly.h Functions/defines related to the trolly AI. */
#ifndef AI_TROLLY_H
#define AI_TROLLY_H
#include "../../aystar.h"
#include "../../player_type.h"
#include "../../vehicle_type.h"
#include "../../date_type.h"
#include "../../engine_type.h"
/*
* These defines can be altered to change the behavoir of the AI
*
* WARNING:
* This can also alter the AI in a negative way. I will never claim these settings
* are perfect, but don't change them if you don't know what the effect is.
*/
// How many times it the H multiplied. The higher, the more it will go straight to the
// end point. The lower, how more it will find the route with the lowest cost.
// also: the lower, the longer it takes before route is calculated..
#define AI_PATHFINDER_H_MULTIPLER 100
// How many loops may AyStar do before it stops
// 0 = infinite
#define AI_PATHFINDER_LOOPS_PER_TICK 5
// How long may the AI search for one route?
// 0 = infinite
// This number is the number of tiles tested.
// It takes (AI_PATHFINDER_MAX_SEARCH_NODES / AI_PATHFINDER_LOOPS_PER_TICK) ticks
// to get here.. with 5000 / 10 = 500. 500 / 74 (one day) = 8 days till it aborts
// (that is: if the AI is on VERY FAST! :p
#define AI_PATHFINDER_MAX_SEARCH_NODES 5000
// If you enable this, the AI is not allowed to make 90degree turns
#define AI_PATHFINDER_NO_90DEGREES_TURN
// Below are defines for the g-calculation
// Standard penalty given to a tile
#define AI_PATHFINDER_PENALTY 150
// The penalty given to a tile that is going up
#define AI_PATHFINDER_TILE_GOES_UP_PENALTY 450
// The penalty given to a tile which would have to use fundation
#define AI_PATHFINDER_FOUNDATION_PENALTY 100
// Changing direction is a penalty, to prevent curved ways (with that: slow ways)
#define AI_PATHFINDER_DIRECTION_CHANGE_PENALTY 200
// Same penalty, only for when road already exists
#define AI_PATHFINDER_DIRECTION_CHANGE_ON_EXISTING_ROAD_PENALTY 50
// A diagonal track cost the same as a straigh, but a diagonal is faster... so give
// a bonus for using diagonal track
#ifdef AI_PATHFINDER_NO_90DEGREES_TURN
#define AI_PATHFINDER_DIAGONAL_BONUS 95
#else
#define AI_PATHFINDER_DIAGONAL_BONUS 75
#endif
// If a roadblock already exists, it gets a bonus
#define AI_PATHFINDER_ROAD_ALREADY_EXISTS_BONUS 140
// To prevent 3 direction changes in 3 tiles, this penalty is given in such situation
#define AI_PATHFINDER_CURVE_PENALTY 200
// Penalty a bridge gets per length
#define AI_PATHFINDER_BRIDGE_PENALTY 180
// The penalty for a bridge going up
#define AI_PATHFINDER_BRIDGE_GOES_UP_PENALTY 1000
// Tunnels are expensive...
// Because of that, every tile the cost is increased with 1/8th of his value
// This is also true if you are building a tunnel yourself
#define AI_PATHFINDER_TUNNEL_PENALTY 350
/*
* Ai_New defines
*/
// How long may we search cities and industry for a new route?
#define AI_LOCATE_ROUTE_MAX_COUNTER 200
// How many days must there be between building the first station and the second station
// within one city. This number is in days and should be more than 4 months.
#define AI_CHECKCITY_DATE_BETWEEN 180
// How many cargo is needed for one station in a city?
#define AI_CHECKCITY_CARGO_PER_STATION 60
// How much cargo must there not be used in a city before we can build a new station?
#define AI_CHECKCITY_NEEDED_CARGO 50
// When there is already a station which takes the same good and the rating of that
// city is higher then this numer, we are not going to attempt to build anything
// there
#define AI_CHECKCITY_CARGO_RATING 50
// But, there is a chance of 1 out of this number, that we do ;)
#define AI_CHECKCITY_CARGO_RATING_CHANCE 5
// If a city is too small to contain a station, there is a small chance
// that we still do so.. just to make the city bigger!
#define AI_CHECKCITY_CITY_CHANCE 5
// This number indicates for every unit of cargo, how many tiles two stations maybe be away
// from eachother. In other words: if we have 120 units of cargo in one station, and 120 units
// of the cargo in the other station, both stations can be 96 units away from eachother, if the
// next number is 0.4.
#define AI_LOCATEROUTE_BUS_CARGO_DISTANCE 0.4
#define AI_LOCATEROUTE_TRUCK_CARGO_DISTANCE 0.7
// In whole tiles, the minimum distance for a truck route
#define AI_LOCATEROUTE_TRUCK_MIN_DISTANCE 30
// The amount of tiles in a square from -X to +X that is scanned for a station spot
// (so if this number is 10, 20x20 = 400 tiles are scanned for _the_ perfect spot
// Safe values are between 15 and 5
#define AI_FINDSTATION_TILE_RANGE 10
// Building on normal speed goes very fast. Idle this amount of ticks between every
// building part. It is calculated like this: (4 - competitor_speed) * num + 1
// where competitor_speed is between 0 (very slow) to 4 (very fast)
#define AI_BUILDPATH_PAUSE 10
// Minimum % of reliabilty a vehicle has to have before the AI buys it
#define AI_VEHICLE_MIN_RELIABILTY 60
// The minimum amount of money a player should always have
#define AI_MINIMUM_MONEY 15000
// If the most cheap route is build, how much is it going to cost..
// This is to prevent the AI from trying to build a route which can not be paid for
#define AI_MINIMUM_BUS_ROUTE_MONEY 25000
#define AI_MINIMUM_TRUCK_ROUTE_MONEY 35000
// The minimum amount of money before we are going to repay any money
#define AI_MINIMUM_LOAN_REPAY_MONEY 40000
// How many repays do we do if we have enough money to do so?
// Every repay is 10000
#define AI_LOAN_REPAY 2
// How much income must we have before paying back a loan? Month-based (and looked at the last month)
#define AI_MINIMUM_INCOME_FOR_LOAN 7000
// If there is <num> time as much cargo in the station then the vehicle can handle
// reuse the station instead of building a new one!
#define AI_STATION_REUSE_MULTIPLER 2
// No more than this amount of vehicles per station..
#define AI_CHECK_MAX_VEHICLE_PER_STATION 10
// How many thick between building 2 vehicles
#define AI_BUILD_VEHICLE_TIME_BETWEEN DAY_TICKS
// How many days must there between vehicle checks
// The more often, the less non-money-making lines there will be
// but the unfair it may seem to a human player
#define AI_DAYS_BETWEEN_VEHICLE_CHECKS 30
// How money profit does a vehicle needs to make to stay in order
// This is the profit of this year + profit of last year
// But also for vehicles that are just one year old. In other words:
// Vehicles of 2 years do easier meet this setting then vehicles
// of one year. This is a very good thing. New vehicles are filtered,
// while old vehicles stay longer, because we do get less in return.
#define AI_MINIMUM_ROUTE_PROFIT 1000
// A vehicle is considered lost when he his cargo is more than 180 days old
#define AI_VEHICLE_LOST_DAYS 180
// How many times may the AI try to find a route before it gives up
#define AI_MAX_TRIES_FOR_SAME_ROUTE 8
/*
* End of defines
*/
// This stops 90degrees curves
static const byte _illegal_curves[6] = {
255, 255, // Horz and vert, don't have the effect
5, // upleft and upright are not valid
4, // downright and downleft are not valid
2, // downleft and upleft are not valid
3, // upright and downright are not valid
};
enum {
AI_STATE_STARTUP = 0,
AI_STATE_FIRST_TIME,
AI_STATE_NOTHING,
AI_STATE_WAKE_UP,
AI_STATE_LOCATE_ROUTE,
AI_STATE_FIND_STATION,
AI_STATE_FIND_PATH,
AI_STATE_FIND_DEPOT,
AI_STATE_VERIFY_ROUTE,
AI_STATE_BUILD_STATION,
AI_STATE_BUILD_PATH,
AI_STATE_BUILD_DEPOT,
AI_STATE_BUILD_VEHICLE,
AI_STATE_WAIT_FOR_BUILD,
AI_STATE_GIVE_ORDERS,
AI_STATE_START_VEHICLE,
AI_STATE_REPAY_MONEY,
AI_STATE_CHECK_ALL_VEHICLES,
AI_STATE_ACTION_DONE,
AI_STATE_STOP, // Temporary function to stop the AI
};
// Used for tbt (train/bus/truck)
enum {
AI_TRAIN = 0,
AI_BUS,
AI_TRUCK,
};
enum {
AI_ACTION_NONE = 0,
AI_ACTION_BUS_ROUTE,
AI_ACTION_TRUCK_ROUTE,
AI_ACTION_REPAY_LOAN,
AI_ACTION_CHECK_ALL_VEHICLES,
};
// Used for from_type/to_type
enum {
AI_NO_TYPE = 0,
AI_CITY,
AI_INDUSTRY,
};
// Flags for in the vehicle
enum {
AI_VEHICLEFLAG_SELL = 1,
// Remember, flags must be in power of 2
};
#define AI_NO_CARGO 0xFF // Means that there is no cargo defined yet (used for industry)
#define AI_NEED_CARGO 0xFE // Used when the AI needs to find out a cargo for the route
#define AI_STATION_RANGE TileXY(MapMaxX(), MapMaxY())
#define AI_PATHFINDER_NO_DIRECTION (byte)-1
// Flags used in user_data
#define AI_PATHFINDER_FLAG_BRIDGE 1
#define AI_PATHFINDER_FLAG_TUNNEL 2
typedef void AiNew_StateFunction(Player *p);
// ai_new.c
void AiNewDoGameLoop(Player *p);
struct Ai_PathFinderInfo {
TileIndex start_tile_tl; ///< tl = top-left
TileIndex start_tile_br; ///< br = bottom-right
TileIndex end_tile_tl; ///< tl = top-left
TileIndex end_tile_br; ///< br = bottom-right
DiagDirection start_direction; ///< 0 to 3 or AI_PATHFINDER_NO_DIRECTION
DiagDirection end_direction; ///< 0 to 3 or AI_PATHFINDER_NO_DIRECTION
TileIndex route[500];
byte route_extra[500]; ///< Some extra information about the route like bridge/tunnel
int route_length;
int position; ///< Current position in the build-path, needed to build the path
bool rail_or_road; ///< true = rail, false = road
};
// ai_pathfinder.c
AyStar *new_AyStar_AiPathFinder(int max_tiles_around, Ai_PathFinderInfo *PathFinderInfo);
void clean_AyStar_AiPathFinder(AyStar *aystar, Ai_PathFinderInfo *PathFinderInfo);
// ai_shared.c
int AiNew_GetRailDirection(TileIndex tile_a, TileIndex tile_b, TileIndex tile_c);
int AiNew_GetRoadDirection(TileIndex tile_a, TileIndex tile_b, TileIndex tile_c);
DiagDirection AiNew_GetDirection(TileIndex tile_a, TileIndex tile_b);
bool AiNew_SetSpecialVehicleFlag(Player *p, Vehicle *v, uint flag);
uint AiNew_GetSpecialVehicleFlag(Player *p, Vehicle *v);
// ai_build.c
bool AiNew_Build_CompanyHQ(Player *p, TileIndex tile);
CommandCost AiNew_Build_Station(Player *p, byte type, TileIndex tile, byte length, byte numtracks, byte direction, byte flag);
CommandCost AiNew_Build_Bridge(Player *p, TileIndex tile_a, TileIndex tile_b, byte flag);
CommandCost AiNew_Build_RoutePart(Player *p, Ai_PathFinderInfo *PathFinderInfo, byte flag);
EngineID AiNew_PickVehicle(Player *p);
CommandCost AiNew_Build_Vehicle(Player *p, TileIndex tile, byte flag);
CommandCost AiNew_Build_Depot(Player* p, TileIndex tile, DiagDirection direction, byte flag);
/* The amount of memory reserved for the AI-special-vehicles */
#define AI_MAX_SPECIAL_VEHICLES 100
struct Ai_SpecialVehicle {
VehicleID veh_id;
uint32 flag;
};
struct PlayerAiNew {
uint8 state;
uint tick;
uint idle;
int temp; ///< A value used in more than one function, but it just temporary
///< The use is pretty simple: with this we can 'think' about stuff
///< in more than one tick, and more than one AI. A static will not
///< do, because they are not saved. This way, the AI is almost human ;)
int counter; ///< For the same reason as temp, we have counter. It can count how
///< long we are trying something, and just abort if it takes too long
/* Pathfinder stuff */
Ai_PathFinderInfo path_info;
AyStar *pathfinder;
/* Route stuff */
CargoID cargo;
byte tbt; ///< train/bus/truck 0/1/2 AI_TRAIN/AI_BUS/AI_TRUCK
Money new_cost;
byte action;
int last_id; ///< here is stored the last id of the searched city/industry
Date last_vehiclecheck_date; // Used in CheckVehicle
Ai_SpecialVehicle special_vehicles[AI_MAX_SPECIAL_VEHICLES]; ///< Some vehicles have some special flags
TileIndex from_tile;
TileIndex to_tile;
DiagDirectionByte from_direction;
DiagDirectionByte to_direction;
bool from_deliver; ///< True if this is the station that GIVES cargo
bool to_deliver;
TileIndex depot_tile;
DiagDirectionByte depot_direction;
byte amount_veh; ///< How many vehicles we are going to build in this route
byte cur_veh; ///< How many vehicles did we bought?
VehicleID veh_id; ///< Used when bought a vehicle
VehicleID veh_main_id; ///< The ID of the first vehicle, for shared copy
int from_ic; ///< ic = industry/city. This is the ID of them
byte from_type; ///< AI_NO_TYPE/AI_CITY/AI_INDUSTRY
int to_ic;
byte to_type;
};
extern PlayerAiNew _players_ainew[MAX_PLAYERS];
#endif /* AI_TROLLY_H */