You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Ventoy/vtoycli/fat_io_lib/release/fat_access.c

905 lines
33 KiB
C

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// FAT16/32 File IO Library
// V2.6
// Ultra-Embedded.com
// Copyright 2003 - 2012
//
// Email: admin@ultra-embedded.com
//
// License: GPL
// If you would like a version with a more permissive license for use in
// closed source commercial applications please contact me for details.
//-----------------------------------------------------------------------------
//
// This file is part of FAT File IO Library.
//
// FAT File IO Library is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// FAT File IO Library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with FAT File IO Library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
#include <string.h>
#include "fat_defs.h"
#include "fat_access.h"
#include "fat_table.h"
#include "fat_write.h"
#include "fat_string.h"
#include "fat_misc.h"
//-----------------------------------------------------------------------------
// fatfs_init: Load FAT Parameters
//-----------------------------------------------------------------------------
int fatfs_init(struct fatfs *fs)
{
uint8 num_of_fats;
uint16 reserved_sectors;
uint32 FATSz;
uint32 root_dir_sectors;
uint32 total_sectors;
uint32 data_sectors;
uint32 count_of_clusters;
uint8 valid_partition = 0;
fs->currentsector.address = FAT32_INVALID_CLUSTER;
fs->currentsector.dirty = 0;
fs->next_free_cluster = 0; // Invalid
fatfs_fat_init(fs);
// Make sure we have a read function (write function is optional)
if (!fs->disk_io.read_media)
return FAT_INIT_MEDIA_ACCESS_ERROR;
// MBR: Sector 0 on the disk
// NOTE: Some removeable media does not have this.
// Load MBR (LBA 0) into the 512 byte buffer
if (!fs->disk_io.read_media(0, fs->currentsector.sector, 1))
return FAT_INIT_MEDIA_ACCESS_ERROR;
// Make Sure 0x55 and 0xAA are at end of sector
// (this should be the case regardless of the MBR or boot sector)
if (fs->currentsector.sector[SIGNATURE_POSITION] != 0x55 || fs->currentsector.sector[SIGNATURE_POSITION+1] != 0xAA)
return FAT_INIT_INVALID_SIGNATURE;
// Now check again using the access function to prove endian conversion function
if (GET_16BIT_WORD(fs->currentsector.sector, SIGNATURE_POSITION) != SIGNATURE_VALUE)
return FAT_INIT_ENDIAN_ERROR;
// Verify packed structures
if (sizeof(struct fat_dir_entry) != FAT_DIR_ENTRY_SIZE)
return FAT_INIT_STRUCT_PACKING;
// Check the partition type code
switch(fs->currentsector.sector[PARTITION1_TYPECODE_LOCATION])
{
case 0x0B:
case 0x06:
case 0x0C:
case 0x0E:
case 0x0F:
case 0x05:
valid_partition = 1;
break;
case 0x00:
valid_partition = 0;
break;
default:
if (fs->currentsector.sector[PARTITION1_TYPECODE_LOCATION] <= 0x06)
valid_partition = 1;
break;
}
// Read LBA Begin for the file system
if (valid_partition)
fs->lba_begin = GET_32BIT_WORD(fs->currentsector.sector, PARTITION1_LBA_BEGIN_LOCATION);
// Else possibly MBR less disk
else
fs->lba_begin = 0;
// Load Volume 1 table into sector buffer
// (We may already have this in the buffer if MBR less drive!)
if (!fs->disk_io.read_media(fs->lba_begin, fs->currentsector.sector, 1))
return FAT_INIT_MEDIA_ACCESS_ERROR;
// Make sure there are 512 bytes per cluster
if (GET_16BIT_WORD(fs->currentsector.sector, 0x0B) != FAT_SECTOR_SIZE)
return FAT_INIT_INVALID_SECTOR_SIZE;
// Load Parameters of FAT partition
fs->sectors_per_cluster = fs->currentsector.sector[BPB_SECPERCLUS];
reserved_sectors = GET_16BIT_WORD(fs->currentsector.sector, BPB_RSVDSECCNT);
num_of_fats = fs->currentsector.sector[BPB_NUMFATS];
fs->root_entry_count = GET_16BIT_WORD(fs->currentsector.sector, BPB_ROOTENTCNT);
if(GET_16BIT_WORD(fs->currentsector.sector, BPB_FATSZ16) != 0)
fs->fat_sectors = GET_16BIT_WORD(fs->currentsector.sector, BPB_FATSZ16);
else
fs->fat_sectors = GET_32BIT_WORD(fs->currentsector.sector, BPB_FAT32_FATSZ32);
// For FAT32 (which this may be)
fs->rootdir_first_cluster = GET_32BIT_WORD(fs->currentsector.sector, BPB_FAT32_ROOTCLUS);
fs->fs_info_sector = GET_16BIT_WORD(fs->currentsector.sector, BPB_FAT32_FSINFO);
// For FAT16 (which this may be), rootdir_first_cluster is actuall rootdir_first_sector
fs->rootdir_first_sector = reserved_sectors + (num_of_fats * fs->fat_sectors);
fs->rootdir_sectors = ((fs->root_entry_count * 32) + (FAT_SECTOR_SIZE - 1)) / FAT_SECTOR_SIZE;
// First FAT LBA address
fs->fat_begin_lba = fs->lba_begin + reserved_sectors;
// The address of the first data cluster on this volume
fs->cluster_begin_lba = fs->fat_begin_lba + (num_of_fats * fs->fat_sectors);
if (GET_16BIT_WORD(fs->currentsector.sector, 0x1FE) != 0xAA55) // This signature should be AA55
return FAT_INIT_INVALID_SIGNATURE;
// Calculate the root dir sectors
root_dir_sectors = ((GET_16BIT_WORD(fs->currentsector.sector, BPB_ROOTENTCNT) * 32) + (GET_16BIT_WORD(fs->currentsector.sector, BPB_BYTSPERSEC) - 1)) / GET_16BIT_WORD(fs->currentsector.sector, BPB_BYTSPERSEC);
if(GET_16BIT_WORD(fs->currentsector.sector, BPB_FATSZ16) != 0)
FATSz = GET_16BIT_WORD(fs->currentsector.sector, BPB_FATSZ16);
else
FATSz = GET_32BIT_WORD(fs->currentsector.sector, BPB_FAT32_FATSZ32);
if(GET_16BIT_WORD(fs->currentsector.sector, BPB_TOTSEC16) != 0)
total_sectors = GET_16BIT_WORD(fs->currentsector.sector, BPB_TOTSEC16);
else
total_sectors = GET_32BIT_WORD(fs->currentsector.sector, BPB_TOTSEC32);
data_sectors = total_sectors - (GET_16BIT_WORD(fs->currentsector.sector, BPB_RSVDSECCNT) + (fs->currentsector.sector[BPB_NUMFATS] * FATSz) + root_dir_sectors);
// Find out which version of FAT this is...
if (fs->sectors_per_cluster != 0)
{
count_of_clusters = data_sectors / fs->sectors_per_cluster;
if(count_of_clusters < 4085)
// Volume is FAT12
return FAT_INIT_WRONG_FILESYS_TYPE;
else if(count_of_clusters < 65525)
{
// Clear this FAT32 specific param
fs->rootdir_first_cluster = 0;
// Volume is FAT16
fs->fat_type = FAT_TYPE_16;
return FAT_INIT_OK;
}
else
{
// Volume is FAT32
fs->fat_type = FAT_TYPE_32;
return FAT_INIT_OK;
}
}
else
return FAT_INIT_WRONG_FILESYS_TYPE;
}
//-----------------------------------------------------------------------------
// fatfs_lba_of_cluster: This function converts a cluster number into a sector /
// LBA number.
//-----------------------------------------------------------------------------
uint32 fatfs_lba_of_cluster(struct fatfs *fs, uint32 Cluster_Number)
{
if (fs->fat_type == FAT_TYPE_16)
return (fs->cluster_begin_lba + (fs->root_entry_count * 32 / FAT_SECTOR_SIZE) + ((Cluster_Number-2) * fs->sectors_per_cluster));
else
return ((fs->cluster_begin_lba + ((Cluster_Number-2)*fs->sectors_per_cluster)));
}
//-----------------------------------------------------------------------------
// fatfs_sector_read:
//-----------------------------------------------------------------------------
int fatfs_sector_read(struct fatfs *fs, uint32 lba, uint8 *target, uint32 count)
{
return fs->disk_io.read_media(lba, target, count);
}
//-----------------------------------------------------------------------------
// fatfs_sector_write:
//-----------------------------------------------------------------------------
int fatfs_sector_write(struct fatfs *fs, uint32 lba, uint8 *target, uint32 count)
{
return fs->disk_io.write_media(lba, target, count);
}
//-----------------------------------------------------------------------------
// fatfs_sector_reader: From the provided startcluster and sector offset
// Returns True if success, returns False if not (including if read out of range)
//-----------------------------------------------------------------------------
int fatfs_sector_reader(struct fatfs *fs, uint32 start_cluster, uint32 offset, uint8 *target)
{
uint32 sector_to_read = 0;
uint32 cluster_to_read = 0;
uint32 cluster_chain = 0;
uint32 i;
uint32 lba;
// FAT16 Root directory
if (fs->fat_type == FAT_TYPE_16 && start_cluster == 0)
{
if (offset < fs->rootdir_sectors)
lba = fs->lba_begin + fs->rootdir_first_sector + offset;
else
return 0;
}
// FAT16/32 Other
else
{
// Set start of cluster chain to initial value
cluster_chain = start_cluster;
// Find parameters
cluster_to_read = offset / fs->sectors_per_cluster;
sector_to_read = offset - (cluster_to_read*fs->sectors_per_cluster);
// Follow chain to find cluster to read
for (i=0; i<cluster_to_read; i++)
cluster_chain = fatfs_find_next_cluster(fs, cluster_chain);
// If end of cluster chain then return false
if (cluster_chain == FAT32_LAST_CLUSTER)
return 0;
// Calculate sector address
lba = fatfs_lba_of_cluster(fs, cluster_chain)+sector_to_read;
}
// User provided target array
if (target)
return fs->disk_io.read_media(lba, target, 1);
// Else read sector if not already loaded
else if (lba != fs->currentsector.address)
{
fs->currentsector.address = lba;
return fs->disk_io.read_media(fs->currentsector.address, fs->currentsector.sector, 1);
}
else
return 1;
}
//-----------------------------------------------------------------------------
// fatfs_read_sector: Read from the provided cluster and sector offset
// Returns True if success, returns False if not
//-----------------------------------------------------------------------------
int fatfs_read_sector(struct fatfs *fs, uint32 cluster, uint32 sector, uint8 *target)
{
// FAT16 Root directory
if (fs->fat_type == FAT_TYPE_16 && cluster == 0)
{
uint32 lba;
// In FAT16, there are a limited amount of sectors in root dir!
if (sector < fs->rootdir_sectors)
lba = fs->lba_begin + fs->rootdir_first_sector + sector;
else
return 0;
// User target buffer passed in
if (target)
{
// Read from disk
return fs->disk_io.read_media(lba, target, 1);
}
else
{
// Calculate read address
fs->currentsector.address = lba;
// Read from disk
return fs->disk_io.read_media(fs->currentsector.address, fs->currentsector.sector, 1);
}
}
// FAT16/32 Other
else
{
// User target buffer passed in
if (target)
{
// Calculate read address
uint32 lba = fatfs_lba_of_cluster(fs, cluster) + sector;
// Read from disk
return fs->disk_io.read_media(lba, target, 1);
}
else
{
// Calculate write address
fs->currentsector.address = fatfs_lba_of_cluster(fs, cluster)+sector;
// Read from disk
return fs->disk_io.read_media(fs->currentsector.address, fs->currentsector.sector, 1);
}
}
}
//-----------------------------------------------------------------------------
// fatfs_write_sector: Write to the provided cluster and sector offset
// Returns True if success, returns False if not
//-----------------------------------------------------------------------------
#if FATFS_INC_WRITE_SUPPORT
int fatfs_write_sector(struct fatfs *fs, uint32 cluster, uint32 sector, uint8 *target)
{
// No write access?
if (!fs->disk_io.write_media)
return 0;
// FAT16 Root directory
if (fs->fat_type == FAT_TYPE_16 && cluster == 0)
{
uint32 lba;
// In FAT16 we cannot extend the root dir!
if (sector < fs->rootdir_sectors)
lba = fs->lba_begin + fs->rootdir_first_sector + sector;
else
return 0;
// User target buffer passed in
if (target)
{
// Write to disk
return fs->disk_io.write_media(lba, target, 1);
}
else
{
// Calculate write address
fs->currentsector.address = lba;
// Write to disk
return fs->disk_io.write_media(fs->currentsector.address, fs->currentsector.sector, 1);
}
}
// FAT16/32 Other
else
{
// User target buffer passed in
if (target)
{
// Calculate write address
uint32 lba = fatfs_lba_of_cluster(fs, cluster) + sector;
// Write to disk
return fs->disk_io.write_media(lba, target, 1);
}
else
{
// Calculate write address
fs->currentsector.address = fatfs_lba_of_cluster(fs, cluster)+sector;
// Write to disk
return fs->disk_io.write_media(fs->currentsector.address, fs->currentsector.sector, 1);
}
}
}
#endif
//-----------------------------------------------------------------------------
// fatfs_show_details: Show the details about the filesystem
//-----------------------------------------------------------------------------
void fatfs_show_details(struct fatfs *fs)
{
FAT_PRINTF(("FAT details:\r\n"));
FAT_PRINTF((" Type =%s", (fs->fat_type == FAT_TYPE_32) ? "FAT32": "FAT16"));
FAT_PRINTF((" Root Dir First Cluster = %x\r\n", fs->rootdir_first_cluster));
FAT_PRINTF((" FAT Begin LBA = 0x%x\r\n",fs->fat_begin_lba));
FAT_PRINTF((" Cluster Begin LBA = 0x%x\r\n",fs->cluster_begin_lba));
FAT_PRINTF((" Sectors Per Cluster = %d\r\n", fs->sectors_per_cluster));
}
//-----------------------------------------------------------------------------
// fatfs_get_root_cluster: Get the root dir cluster
//-----------------------------------------------------------------------------
uint32 fatfs_get_root_cluster(struct fatfs *fs)
{
// NOTE: On FAT16 this will be 0 which has a special meaning...
return fs->rootdir_first_cluster;
}
//-------------------------------------------------------------
// fatfs_get_file_entry: Find the file entry for a filename
//-------------------------------------------------------------
uint32 fatfs_get_file_entry(struct fatfs *fs, uint32 Cluster, char *name_to_find, struct fat_dir_entry *sfEntry)
{
uint8 item=0;
uint16 recordoffset = 0;
uint8 i=0;
int x=0;
char *long_filename = NULL;
char short_filename[13];
struct lfn_cache lfn;
int dotRequired = 0;
struct fat_dir_entry *directoryEntry;
fatfs_lfn_cache_init(&lfn, 1);
// Main cluster following loop
while (1)
{
// Read sector
if (fatfs_sector_reader(fs, Cluster, x++, 0)) // If sector read was successfull
{
// Analyse Sector
for (item = 0; item < FAT_DIR_ENTRIES_PER_SECTOR; item++)
{
// Create the multiplier for sector access
recordoffset = FAT_DIR_ENTRY_SIZE * item;
// Overlay directory entry over buffer
directoryEntry = (struct fat_dir_entry*)(fs->currentsector.sector+recordoffset);
#if FATFS_INC_LFN_SUPPORT
// Long File Name Text Found
if (fatfs_entry_lfn_text(directoryEntry) )
fatfs_lfn_cache_entry(&lfn, fs->currentsector.sector+recordoffset);
// If Invalid record found delete any long file name information collated
else if (fatfs_entry_lfn_invalid(directoryEntry) )
fatfs_lfn_cache_init(&lfn, 0);
// Normal SFN Entry and Long text exists
else if (fatfs_entry_lfn_exists(&lfn, directoryEntry) )
{
long_filename = fatfs_lfn_cache_get(&lfn);
// Compare names to see if they match
if (fatfs_compare_names(long_filename, name_to_find))
{
memcpy(sfEntry,directoryEntry,sizeof(struct fat_dir_entry));
return 1;
}
fatfs_lfn_cache_init(&lfn, 0);
}
else
#endif
// Normal Entry, only 8.3 Text
if (fatfs_entry_sfn_only(directoryEntry) )
{
memset(short_filename, 0, sizeof(short_filename));
// Copy name to string
for (i=0; i<8; i++)
short_filename[i] = directoryEntry->Name[i];
// Extension
dotRequired = 0;
for (i=8; i<11; i++)
{
short_filename[i+1] = directoryEntry->Name[i];
if (directoryEntry->Name[i] != ' ')
dotRequired = 1;
}
// Dot only required if extension present
if (dotRequired)
{
// If not . or .. entry
if (short_filename[0]!='.')
short_filename[8] = '.';
else
short_filename[8] = ' ';
}
else
short_filename[8] = ' ';
// Compare names to see if they match
if (fatfs_compare_names(short_filename, name_to_find))
{
memcpy(sfEntry,directoryEntry,sizeof(struct fat_dir_entry));
return 1;
}
fatfs_lfn_cache_init(&lfn, 0);
}
} // End of if
}
else
break;
} // End of while loop
return 0;
}
//-------------------------------------------------------------
// fatfs_sfn_exists: Check if a short filename exists.
// NOTE: shortname is XXXXXXXXYYY not XXXXXXXX.YYY
//-------------------------------------------------------------
#if FATFS_INC_WRITE_SUPPORT
int fatfs_sfn_exists(struct fatfs *fs, uint32 Cluster, char *shortname)
{
uint8 item=0;
uint16 recordoffset = 0;
int x=0;
struct fat_dir_entry *directoryEntry;
// Main cluster following loop
while (1)
{
// Read sector
if (fatfs_sector_reader(fs, Cluster, x++, 0)) // If sector read was successfull
{
// Analyse Sector
for (item = 0; item < FAT_DIR_ENTRIES_PER_SECTOR; item++)
{
// Create the multiplier for sector access
recordoffset = FAT_DIR_ENTRY_SIZE * item;
// Overlay directory entry over buffer
directoryEntry = (struct fat_dir_entry*)(fs->currentsector.sector+recordoffset);
#if FATFS_INC_LFN_SUPPORT
// Long File Name Text Found
if (fatfs_entry_lfn_text(directoryEntry) )
;
// If Invalid record found delete any long file name information collated
else if (fatfs_entry_lfn_invalid(directoryEntry) )
;
else
#endif
// Normal Entry, only 8.3 Text
if (fatfs_entry_sfn_only(directoryEntry) )
{
if (strncmp((const char*)directoryEntry->Name, shortname, 11)==0)
return 1;
}
} // End of if
}
else
break;
} // End of while loop
return 0;
}
#endif
//-------------------------------------------------------------
// fatfs_update_timestamps: Update date/time details
//-------------------------------------------------------------
#if FATFS_INC_TIME_DATE_SUPPORT
int fatfs_update_timestamps(struct fat_dir_entry *directoryEntry, int create, int modify, int access)
{
time_t time_now;
struct tm * time_info;
uint16 fat_time;
uint16 fat_date;
// Get system time
time(&time_now);
// Convert to local time
time_info = localtime(&time_now);
// Convert time to FAT format
fat_time = fatfs_convert_to_fat_time(time_info->tm_hour, time_info->tm_min, time_info->tm_sec);
// Convert date to FAT format
fat_date = fatfs_convert_to_fat_date(time_info->tm_mday, time_info->tm_mon + 1, time_info->tm_year + 1900);
// Update requested fields
if (create)
{
directoryEntry->CrtTime[1] = fat_time >> 8;
directoryEntry->CrtTime[0] = fat_time >> 0;
directoryEntry->CrtDate[1] = fat_date >> 8;
directoryEntry->CrtDate[0] = fat_date >> 0;
}
if (modify)
{
directoryEntry->WrtTime[1] = fat_time >> 8;
directoryEntry->WrtTime[0] = fat_time >> 0;
directoryEntry->WrtDate[1] = fat_date >> 8;
directoryEntry->WrtDate[0] = fat_date >> 0;
}
if (access)
{
directoryEntry->LstAccDate[1] = fat_time >> 8;
directoryEntry->LstAccDate[0] = fat_time >> 0;
directoryEntry->LstAccDate[1] = fat_date >> 8;
directoryEntry->LstAccDate[0] = fat_date >> 0;
}
return 1;
}
#endif
//-------------------------------------------------------------
// fatfs_update_file_length: Find a SFN entry and update it
// NOTE: shortname is XXXXXXXXYYY not XXXXXXXX.YYY
//-------------------------------------------------------------
#if FATFS_INC_WRITE_SUPPORT
int fatfs_update_file_length(struct fatfs *fs, uint32 Cluster, char *shortname, uint32 fileLength)
{
uint8 item=0;
uint16 recordoffset = 0;
int x=0;
struct fat_dir_entry *directoryEntry;
// No write access?
if (!fs->disk_io.write_media)
return 0;
// Main cluster following loop
while (1)
{
// Read sector
if (fatfs_sector_reader(fs, Cluster, x++, 0)) // If sector read was successfull
{
// Analyse Sector
for (item = 0; item < FAT_DIR_ENTRIES_PER_SECTOR; item++)
{
// Create the multiplier for sector access
recordoffset = FAT_DIR_ENTRY_SIZE * item;
// Overlay directory entry over buffer
directoryEntry = (struct fat_dir_entry*)(fs->currentsector.sector+recordoffset);
#if FATFS_INC_LFN_SUPPORT
// Long File Name Text Found
if (fatfs_entry_lfn_text(directoryEntry) )
;
// If Invalid record found delete any long file name information collated
else if (fatfs_entry_lfn_invalid(directoryEntry) )
;
// Normal Entry, only 8.3 Text
else
#endif
if (fatfs_entry_sfn_only(directoryEntry) )
{
if (strncmp((const char*)directoryEntry->Name, shortname, 11)==0)
{
directoryEntry->FileSize = FAT_HTONL(fileLength);
#if FATFS_INC_TIME_DATE_SUPPORT
// Update access / modify time & date
fatfs_update_timestamps(directoryEntry, 0, 1, 1);
#endif
// Update sfn entry
memcpy((uint8*)(fs->currentsector.sector+recordoffset), (uint8*)directoryEntry, sizeof(struct fat_dir_entry));
// Write sector back
return fs->disk_io.write_media(fs->currentsector.address, fs->currentsector.sector, 1);
}
}
} // End of if
}
else
break;
} // End of while loop
return 0;
}
#endif
//-------------------------------------------------------------
// fatfs_mark_file_deleted: Find a SFN entry and mark if as deleted
// NOTE: shortname is XXXXXXXXYYY not XXXXXXXX.YYY
//-------------------------------------------------------------
#if FATFS_INC_WRITE_SUPPORT
int fatfs_mark_file_deleted(struct fatfs *fs, uint32 Cluster, char *shortname)
{
uint8 item=0;
uint16 recordoffset = 0;
int x=0;
struct fat_dir_entry *directoryEntry;
// No write access?
if (!fs->disk_io.write_media)
return 0;
// Main cluster following loop
while (1)
{
// Read sector
if (fatfs_sector_reader(fs, Cluster, x++, 0)) // If sector read was successfull
{
// Analyse Sector
for (item = 0; item < FAT_DIR_ENTRIES_PER_SECTOR; item++)
{
// Create the multiplier for sector access
recordoffset = FAT_DIR_ENTRY_SIZE * item;
// Overlay directory entry over buffer
directoryEntry = (struct fat_dir_entry*)(fs->currentsector.sector+recordoffset);
#if FATFS_INC_LFN_SUPPORT
// Long File Name Text Found
if (fatfs_entry_lfn_text(directoryEntry) )
;
// If Invalid record found delete any long file name information collated
else if (fatfs_entry_lfn_invalid(directoryEntry) )
;
// Normal Entry, only 8.3 Text
else
#endif
if (fatfs_entry_sfn_only(directoryEntry) )
{
if (strncmp((const char *)directoryEntry->Name, shortname, 11)==0)
{
// Mark as deleted
directoryEntry->Name[0] = FILE_HEADER_DELETED;
#if FATFS_INC_TIME_DATE_SUPPORT
// Update access / modify time & date
fatfs_update_timestamps(directoryEntry, 0, 1, 1);
#endif
// Update sfn entry
memcpy((uint8*)(fs->currentsector.sector+recordoffset), (uint8*)directoryEntry, sizeof(struct fat_dir_entry));
// Write sector back
return fs->disk_io.write_media(fs->currentsector.address, fs->currentsector.sector, 1);
}
}
} // End of if
}
else
break;
} // End of while loop
return 0;
}
#endif
//-----------------------------------------------------------------------------
// fatfs_list_directory_start: Initialise a directory listing procedure
//-----------------------------------------------------------------------------
#if FATFS_DIR_LIST_SUPPORT
void fatfs_list_directory_start(struct fatfs *fs, struct fs_dir_list_status *dirls, uint32 StartCluster)
{
dirls->cluster = StartCluster;
dirls->sector = 0;
dirls->offset = 0;
}
#endif
//-----------------------------------------------------------------------------
// fatfs_list_directory_next: Get the next entry in the directory.
// Returns: 1 = found, 0 = end of listing
//-----------------------------------------------------------------------------
#if FATFS_DIR_LIST_SUPPORT
int fatfs_list_directory_next(struct fatfs *fs, struct fs_dir_list_status *dirls, struct fs_dir_ent *entry)
{
uint8 i,item;
uint16 recordoffset;
struct fat_dir_entry *directoryEntry;
char *long_filename = NULL;
char short_filename[13];
struct lfn_cache lfn;
int dotRequired = 0;
int result = 0;
// Initialise LFN cache first
fatfs_lfn_cache_init(&lfn, 0);
while (1)
{
// If data read OK
if (fatfs_sector_reader(fs, dirls->cluster, dirls->sector, 0))
{
// Maximum of 16 directory entries
for (item = dirls->offset; item < FAT_DIR_ENTRIES_PER_SECTOR; item++)
{
// Increase directory offset
recordoffset = FAT_DIR_ENTRY_SIZE * item;
// Overlay directory entry over buffer
directoryEntry = (struct fat_dir_entry*)(fs->currentsector.sector+recordoffset);
#if FATFS_INC_LFN_SUPPORT
// Long File Name Text Found
if ( fatfs_entry_lfn_text(directoryEntry) )
fatfs_lfn_cache_entry(&lfn, fs->currentsector.sector+recordoffset);
// If Invalid record found delete any long file name information collated
else if ( fatfs_entry_lfn_invalid(directoryEntry) )
fatfs_lfn_cache_init(&lfn, 0);
// Normal SFN Entry and Long text exists
else if (fatfs_entry_lfn_exists(&lfn, directoryEntry) )
{
// Get text
long_filename = fatfs_lfn_cache_get(&lfn);
strncpy(entry->filename, long_filename, FATFS_MAX_LONG_FILENAME-1);
if (fatfs_entry_is_dir(directoryEntry))
entry->is_dir = 1;
else
entry->is_dir = 0;
#if FATFS_INC_TIME_DATE_SUPPORT
// Get time / dates
entry->create_time = ((uint16)directoryEntry->CrtTime[1] << 8) | directoryEntry->CrtTime[0];
entry->create_date = ((uint16)directoryEntry->CrtDate[1] << 8) | directoryEntry->CrtDate[0];
entry->access_date = ((uint16)directoryEntry->LstAccDate[1] << 8) | directoryEntry->LstAccDate[0];
entry->write_time = ((uint16)directoryEntry->WrtTime[1] << 8) | directoryEntry->WrtTime[0];
entry->write_date = ((uint16)directoryEntry->WrtDate[1] << 8) | directoryEntry->WrtDate[0];
#endif
entry->size = FAT_HTONL(directoryEntry->FileSize);
entry->cluster = (FAT_HTONS(directoryEntry->FstClusHI)<<16) | FAT_HTONS(directoryEntry->FstClusLO);
// Next starting position
dirls->offset = item + 1;
result = 1;
return 1;
}
// Normal Entry, only 8.3 Text
else
#endif
if ( fatfs_entry_sfn_only(directoryEntry) )
{
fatfs_lfn_cache_init(&lfn, 0);
memset(short_filename, 0, sizeof(short_filename));
// Copy name to string
for (i=0; i<8; i++)
short_filename[i] = directoryEntry->Name[i];
// Extension
dotRequired = 0;
for (i=8; i<11; i++)
{
short_filename[i+1] = directoryEntry->Name[i];
if (directoryEntry->Name[i] != ' ')
dotRequired = 1;
}
// Dot only required if extension present
if (dotRequired)
{
// If not . or .. entry
if (short_filename[0]!='.')
short_filename[8] = '.';
else
short_filename[8] = ' ';
}
else
short_filename[8] = ' ';
fatfs_get_sfn_display_name(entry->filename, short_filename);
if (fatfs_entry_is_dir(directoryEntry))
entry->is_dir = 1;
else
entry->is_dir = 0;
#if FATFS_INC_TIME_DATE_SUPPORT
// Get time / dates
entry->create_time = ((uint16)directoryEntry->CrtTime[1] << 8) | directoryEntry->CrtTime[0];
entry->create_date = ((uint16)directoryEntry->CrtDate[1] << 8) | directoryEntry->CrtDate[0];
entry->access_date = ((uint16)directoryEntry->LstAccDate[1] << 8) | directoryEntry->LstAccDate[0];
entry->write_time = ((uint16)directoryEntry->WrtTime[1] << 8) | directoryEntry->WrtTime[0];
entry->write_date = ((uint16)directoryEntry->WrtDate[1] << 8) | directoryEntry->WrtDate[0];
#endif
entry->size = FAT_HTONL(directoryEntry->FileSize);
entry->cluster = (FAT_HTONS(directoryEntry->FstClusHI)<<16) | FAT_HTONS(directoryEntry->FstClusLO);
// Next starting position
dirls->offset = item + 1;
result = 1;
return 1;
}
}// end of for
// If reached end of the dir move onto next sector
dirls->sector++;
dirls->offset = 0;
}
else
break;
}
return result;
}
#endif