// Copyright 2017 Hajime Hoshi // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package maindata import ( "fmt" "io" "github.com/hajimehoshi/go-mp3/internal/bits" "github.com/hajimehoshi/go-mp3/internal/consts" "github.com/hajimehoshi/go-mp3/internal/frameheader" "github.com/hajimehoshi/go-mp3/internal/sideinfo" ) type FullReader interface { ReadFull([]byte) (int, error) } // A MainData is MPEG1 Layer 3 Main Data. type MainData struct { ScalefacL [2][2][22]int // 0-4 bits ScalefacS [2][2][13][3]int // 0-4 bits Is [2][2][576]float32 // Huffman coded freq. lines } var scalefacSizes = [16][2]int{ {0, 0}, {0, 1}, {0, 2}, {0, 3}, {3, 0}, {1, 1}, {1, 2}, {1, 3}, {2, 1}, {2, 2}, {2, 3}, {3, 1}, {3, 2}, {3, 3}, {4, 2}, {4, 3}, } func Read(source FullReader, prev *bits.Bits, header frameheader.FrameHeader, sideInfo *sideinfo.SideInfo) (*MainData, *bits.Bits, error) { nch := header.NumberOfChannels() // Calculate header audio data size framesize := header.FrameSize() if framesize > 2000 { return nil, nil, fmt.Errorf("mp3: framesize = %d", framesize) } // Sideinfo is 17 bytes for one channel and 32 bytes for two sideinfo_size := 32 if nch == 1 { sideinfo_size = 17 } // Main data size is the rest of the frame,including ancillary data main_data_size := framesize - sideinfo_size - 4 // sync+header // CRC is 2 bytes if header.ProtectionBit() == 0 { main_data_size -= 2 } // Assemble main data buffer with data from this frame and the previous // two frames. main_data_begin indicates how many bytes from previous // frames that should be used. This buffer is later accessed by the // Bits function in the same way as the side info is. m, err := read(source, prev, main_data_size, sideInfo.MainDataBegin) if err != nil { // This could be due to not enough data in reservoir return nil, nil, err } md := &MainData{} for gr := 0; gr < 2; gr++ { for ch := 0; ch < nch; ch++ { part_2_start := m.BitPos() // Number of bits in the bitstream for the bands slen1 := scalefacSizes[sideInfo.ScalefacCompress[gr][ch]][0] slen2 := scalefacSizes[sideInfo.ScalefacCompress[gr][ch]][1] if sideInfo.WinSwitchFlag[gr][ch] == 1 && sideInfo.BlockType[gr][ch] == 2 { if sideInfo.MixedBlockFlag[gr][ch] != 0 { for sfb := 0; sfb < 8; sfb++ { md.ScalefacL[gr][ch][sfb] = m.Bits(slen1) } for sfb := 3; sfb < 12; sfb++ { //slen1 for band 3-5,slen2 for 6-11 nbits := slen2 if sfb < 6 { nbits = slen1 } for win := 0; win < 3; win++ { md.ScalefacS[gr][ch][sfb][win] = m.Bits(nbits) } } } else { for sfb := 0; sfb < 12; sfb++ { //slen1 for band 3-5,slen2 for 6-11 nbits := slen2 if sfb < 6 { nbits = slen1 } for win := 0; win < 3; win++ { md.ScalefacS[gr][ch][sfb][win] = m.Bits(nbits) } } } } else { // Scale factor bands 0-5 if sideInfo.Scfsi[ch][0] == 0 || gr == 0 { for sfb := 0; sfb < 6; sfb++ { md.ScalefacL[gr][ch][sfb] = m.Bits(slen1) } } else if sideInfo.Scfsi[ch][0] == 1 && gr == 1 { // Copy scalefactors from granule 0 to granule 1 // TODO: This is not listed on the spec. for sfb := 0; sfb < 6; sfb++ { md.ScalefacL[1][ch][sfb] = md.ScalefacL[0][ch][sfb] } } // Scale factor bands 6-10 if sideInfo.Scfsi[ch][1] == 0 || gr == 0 { for sfb := 6; sfb < 11; sfb++ { md.ScalefacL[gr][ch][sfb] = m.Bits(slen1) } } else if sideInfo.Scfsi[ch][1] == 1 && gr == 1 { // Copy scalefactors from granule 0 to granule 1 for sfb := 6; sfb < 11; sfb++ { md.ScalefacL[1][ch][sfb] = md.ScalefacL[0][ch][sfb] } } // Scale factor bands 11-15 if sideInfo.Scfsi[ch][2] == 0 || gr == 0 { for sfb := 11; sfb < 16; sfb++ { md.ScalefacL[gr][ch][sfb] = m.Bits(slen2) } } else if sideInfo.Scfsi[ch][2] == 1 && gr == 1 { // Copy scalefactors from granule 0 to granule 1 for sfb := 11; sfb < 16; sfb++ { md.ScalefacL[1][ch][sfb] = md.ScalefacL[0][ch][sfb] } } // Scale factor bands 16-20 if sideInfo.Scfsi[ch][3] == 0 || gr == 0 { for sfb := 16; sfb < 21; sfb++ { md.ScalefacL[gr][ch][sfb] = m.Bits(slen2) } } else if sideInfo.Scfsi[ch][3] == 1 && gr == 1 { // Copy scalefactors from granule 0 to granule 1 for sfb := 16; sfb < 21; sfb++ { md.ScalefacL[1][ch][sfb] = md.ScalefacL[0][ch][sfb] } } } // Read Huffman coded data. Skip stuffing bits. if err := readHuffman(m, header, sideInfo, md, part_2_start, gr, ch); err != nil { return nil, nil, err } } } // The ancillary data is stored here,but we ignore it. return md, m, nil } func read(source FullReader, prev *bits.Bits, size int, offset int) (*bits.Bits, error) { if size > 1500 { return nil, fmt.Errorf("mp3: size = %d", size) } // Check that there's data available from previous frames if needed if prev != nil && offset > prev.LenInBytes() { // No, there is not, so we skip decoding this frame, but we have to // read the main_data bits from the bitstream in case they are needed // for decoding the next frame. buf := make([]byte, size) if n, err := source.ReadFull(buf); n < size { if err == io.EOF { return nil, &consts.UnexpectedEOF{"maindata.Read (1)"} } return nil, err } // TODO: Define a special error and enable to continue the next frame. return bits.Append(prev, buf), nil } // Copy data from previous frames vec := []byte{} if prev != nil { vec = prev.Tail(offset) } // Read the main_data from file buf := make([]byte, size) if n, err := source.ReadFull(buf); n < size { if err == io.EOF { return nil, &consts.UnexpectedEOF{"maindata.Read (2)"} } return nil, err } return bits.New(append(vec, buf...)), nil }