You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
cointop/vendor/github.com/hajimehoshi/go-mp3/internal/frame/frame.go

677 lines
23 KiB
Go

// Copyright 2017 Hajime Hoshi
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package frame
import (
"fmt"
"io"
"math"
"github.com/hajimehoshi/go-mp3/internal/bits"
"github.com/hajimehoshi/go-mp3/internal/consts"
"github.com/hajimehoshi/go-mp3/internal/frameheader"
"github.com/hajimehoshi/go-mp3/internal/imdct"
"github.com/hajimehoshi/go-mp3/internal/maindata"
"github.com/hajimehoshi/go-mp3/internal/sideinfo"
)
var (
powtab34 = make([]float64, 8207)
pretab = []float64{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 2, 0}
)
func init() {
for i := range powtab34 {
powtab34[i] = math.Pow(float64(i), 4.0/3.0)
}
}
type Frame struct {
header frameheader.FrameHeader
sideInfo *sideinfo.SideInfo
mainData *maindata.MainData
mainDataBits *bits.Bits
store [2][32][18]float32
v_vec [2][1024]float32
}
type FullReader interface {
ReadFull([]byte) (int, error)
}
func readCRC(source FullReader) error {
buf := make([]byte, 2)
if n, err := source.ReadFull(buf); n < 2 {
if err == io.EOF {
return &consts.UnexpectedEOF{"readCRC"}
}
return fmt.Errorf("mp3: error at readCRC: %v", err)
}
return nil
}
func Read(source FullReader, position int64, prev *Frame) (frame *Frame, startPosition int64, err error) {
h, pos, err := frameheader.Read(source, position)
if err != nil {
return nil, 0, err
}
if h.ProtectionBit() == 0 {
if err := readCRC(source); err != nil {
return nil, 0, err
}
}
if h.ID() != consts.Version1 {
return nil, 0, fmt.Errorf("mp3: only MPEG version 1 (want %d; got %d) is supported", consts.Version1, h.ID())
}
if h.Layer() != consts.Layer3 {
return nil, 0, fmt.Errorf("mp3: only layer3 (want %d; got %d) is supported", consts.Layer3, h.Layer())
}
si, err := sideinfo.Read(source, h)
if err != nil {
return nil, 0, err
}
// If there's not enough main data in the bit reservoir,
// signal to calling function so that decoding isn't done!
// Get main data (scalefactors and Huffman coded frequency data)
var prevM *bits.Bits
if prev != nil {
prevM = prev.mainDataBits
}
md, mdb, err := maindata.Read(source, prevM, h, si)
if err != nil {
return nil, 0, err
}
nf := &Frame{
header: h,
sideInfo: si,
mainData: md,
mainDataBits: mdb,
}
if prev != nil {
nf.store = prev.store
nf.v_vec = prev.v_vec
}
return nf, pos, nil
}
func (f *Frame) SamplingFrequency() int {
return f.header.SamplingFrequency().Int()
}
func (f *Frame) Decode() []byte {
out := make([]byte, consts.BytesPerFrame)
nch := f.header.NumberOfChannels()
for gr := 0; gr < 2; gr++ {
for ch := 0; ch < nch; ch++ {
f.requantize(gr, ch)
f.reorder(gr, ch)
}
f.stereo(gr)
for ch := 0; ch < nch; ch++ {
f.antialias(gr, ch)
f.hybridSynthesis(gr, ch)
f.frequencyInversion(gr, ch)
f.subbandSynthesis(gr, ch, out[consts.SamplesPerGr*4*gr:])
}
}
return out
}
func (f *Frame) requantizeProcessLong(gr, ch, is_pos, sfb int) {
sf_mult := 0.5
if f.sideInfo.ScalefacScale[gr][ch] != 0 {
sf_mult = 1.0
}
pf_x_pt := float64(f.sideInfo.Preflag[gr][ch]) * pretab[sfb]
idx := -(sf_mult * (float64(f.mainData.ScalefacL[gr][ch][sfb]) + pf_x_pt)) +
0.25*(float64(f.sideInfo.GlobalGain[gr][ch])-210)
tmp1 := math.Pow(2.0, idx)
tmp2 := 0.0
if f.mainData.Is[gr][ch][is_pos] < 0.0 {
tmp2 = -powtab34[int(-f.mainData.Is[gr][ch][is_pos])]
} else {
tmp2 = powtab34[int(f.mainData.Is[gr][ch][is_pos])]
}
f.mainData.Is[gr][ch][is_pos] = float32(tmp1 * tmp2)
}
func (f *Frame) requantizeProcessShort(gr, ch, is_pos, sfb, win int) {
sf_mult := 0.5
if f.sideInfo.ScalefacScale[gr][ch] != 0 {
sf_mult = 1.0
}
idx := -(sf_mult * float64(f.mainData.ScalefacS[gr][ch][sfb][win])) +
0.25*(float64(f.sideInfo.GlobalGain[gr][ch])-210.0-
8.0*float64(f.sideInfo.SubblockGain[gr][ch][win]))
tmp1 := math.Pow(2.0, idx)
tmp2 := 0.0
if f.mainData.Is[gr][ch][is_pos] < 0 {
tmp2 = -powtab34[int(-f.mainData.Is[gr][ch][is_pos])]
} else {
tmp2 = powtab34[int(f.mainData.Is[gr][ch][is_pos])]
}
f.mainData.Is[gr][ch][is_pos] = float32(tmp1 * tmp2)
}
func (f *Frame) requantize(gr int, ch int) {
// Setup sampling frequency index
sfreq := f.header.SamplingFrequency()
// Determine type of block to process
if f.sideInfo.WinSwitchFlag[gr][ch] == 1 && f.sideInfo.BlockType[gr][ch] == 2 { // Short blocks
// Check if the first two subbands
// (=2*18 samples = 8 long or 3 short sfb's) uses long blocks
if f.sideInfo.MixedBlockFlag[gr][ch] != 0 { // 2 longbl. sb first
// First process the 2 long block subbands at the start
sfb := 0
next_sfb := consts.SfBandIndicesSet[sfreq].L[sfb+1]
for i := 0; i < 36; i++ {
if i == next_sfb {
sfb++
next_sfb = consts.SfBandIndicesSet[sfreq].L[sfb+1]
}
f.requantizeProcessLong(gr, ch, i, sfb)
}
// And next the remaining,non-zero,bands which uses short blocks
sfb = 3
next_sfb = consts.SfBandIndicesSet[sfreq].S[sfb+1] * 3
win_len := consts.SfBandIndicesSet[sfreq].S[sfb+1] -
consts.SfBandIndicesSet[sfreq].S[sfb]
for i := 36; i < int(f.sideInfo.Count1[gr][ch]); /* i++ done below! */ {
// Check if we're into the next scalefac band
if i == next_sfb {
sfb++
next_sfb = consts.SfBandIndicesSet[sfreq].S[sfb+1] * 3
win_len = consts.SfBandIndicesSet[sfreq].S[sfb+1] -
consts.SfBandIndicesSet[sfreq].S[sfb]
}
for win := 0; win < 3; win++ {
for j := 0; j < win_len; j++ {
f.requantizeProcessShort(gr, ch, i, sfb, win)
i++
}
}
}
} else { // Only short blocks
sfb := 0
next_sfb := consts.SfBandIndicesSet[sfreq].S[sfb+1] * 3
win_len := consts.SfBandIndicesSet[sfreq].S[sfb+1] -
consts.SfBandIndicesSet[sfreq].S[sfb]
for i := 0; i < int(f.sideInfo.Count1[gr][ch]); /* i++ done below! */ {
// Check if we're into the next scalefac band
if i == next_sfb {
sfb++
next_sfb = consts.SfBandIndicesSet[sfreq].S[sfb+1] * 3
win_len = consts.SfBandIndicesSet[sfreq].S[sfb+1] -
consts.SfBandIndicesSet[sfreq].S[sfb]
}
for win := 0; win < 3; win++ {
for j := 0; j < win_len; j++ {
f.requantizeProcessShort(gr, ch, i, sfb, win)
i++
}
}
}
}
} else { // Only long blocks
sfb := 0
next_sfb := consts.SfBandIndicesSet[sfreq].L[sfb+1]
for i := 0; i < int(f.sideInfo.Count1[gr][ch]); i++ {
if i == next_sfb {
sfb++
next_sfb = consts.SfBandIndicesSet[sfreq].L[sfb+1]
}
f.requantizeProcessLong(gr, ch, i, sfb)
}
}
}
func (f *Frame) reorder(gr int, ch int) {
re := make([]float32, consts.SamplesPerGr)
sfreq := f.header.SamplingFrequency() // Setup sampling freq index
// Only reorder short blocks
if (f.sideInfo.WinSwitchFlag[gr][ch] == 1) && (f.sideInfo.BlockType[gr][ch] == 2) { // Short blocks
// Check if the first two subbands
// (=2*18 samples = 8 long or 3 short sfb's) uses long blocks
sfb := 0
// 2 longbl. sb first
if f.sideInfo.MixedBlockFlag[gr][ch] != 0 {
sfb = 3
}
next_sfb := consts.SfBandIndicesSet[sfreq].S[sfb+1] * 3
win_len := consts.SfBandIndicesSet[sfreq].S[sfb+1] - consts.SfBandIndicesSet[sfreq].S[sfb]
i := 36
if sfb == 0 {
i = 0
}
for i < consts.SamplesPerGr {
// Check if we're into the next scalefac band
if i == next_sfb {
// Copy reordered data back to the original vector
j := 3 * consts.SfBandIndicesSet[sfreq].S[sfb]
copy(f.mainData.Is[gr][ch][j:j+3*win_len], re[0:3*win_len])
// Check if this band is above the rzero region,if so we're done
if i >= f.sideInfo.Count1[gr][ch] {
return
}
sfb++
next_sfb = consts.SfBandIndicesSet[sfreq].S[sfb+1] * 3
win_len = consts.SfBandIndicesSet[sfreq].S[sfb+1] - consts.SfBandIndicesSet[sfreq].S[sfb]
}
for win := 0; win < 3; win++ { // Do the actual reordering
for j := 0; j < win_len; j++ {
re[j*3+win] = f.mainData.Is[gr][ch][i]
i++
}
}
}
// Copy reordered data of last band back to original vector
j := 3 * consts.SfBandIndicesSet[sfreq].S[12]
copy(f.mainData.Is[gr][ch][j:j+3*win_len], re[0:3*win_len])
}
}
var (
isRatios = []float32{0.000000, 0.267949, 0.577350, 1.000000, 1.732051, 3.732051}
)
func (f *Frame) stereoProcessIntensityLong(gr int, sfb int) {
is_ratio_l := float32(0)
is_ratio_r := float32(0)
// Check that((is_pos[sfb]=scalefac) < 7) => no intensity stereo
if is_pos := f.mainData.ScalefacL[gr][0][sfb]; is_pos < 7 {
sfreq := f.header.SamplingFrequency() // Setup sampling freq index
sfb_start := consts.SfBandIndicesSet[sfreq].L[sfb]
sfb_stop := consts.SfBandIndicesSet[sfreq].L[sfb+1]
if is_pos == 6 { // tan((6*PI)/12 = PI/2) needs special treatment!
is_ratio_l = 1.0
is_ratio_r = 0.0
} else {
is_ratio_l = isRatios[is_pos] / (1.0 + isRatios[is_pos])
is_ratio_r = 1.0 / (1.0 + isRatios[is_pos])
}
// Now decode all samples in this scale factor band
for i := sfb_start; i < sfb_stop; i++ {
f.mainData.Is[gr][0][i] *= is_ratio_l
f.mainData.Is[gr][1][i] *= is_ratio_r
}
}
}
func (f *Frame) stereoProcessIntensityShort(gr int, sfb int) {
is_ratio_l := float32(0)
is_ratio_r := float32(0)
sfreq := f.header.SamplingFrequency() // Setup sampling freq index
// The window length
win_len := consts.SfBandIndicesSet[sfreq].S[sfb+1] - consts.SfBandIndicesSet[sfreq].S[sfb]
// The three windows within the band has different scalefactors
for win := 0; win < 3; win++ {
// Check that((is_pos[sfb]=scalefac) < 7) => no intensity stereo
is_pos := f.mainData.ScalefacS[gr][0][sfb][win]
if is_pos < 7 {
sfb_start := consts.SfBandIndicesSet[sfreq].S[sfb]*3 + win_len*win
sfb_stop := sfb_start + win_len
if is_pos == 6 { // tan((6*PI)/12 = PI/2) needs special treatment!
is_ratio_l = 1.0
is_ratio_r = 0.0
} else {
is_ratio_l = isRatios[is_pos] / (1.0 + isRatios[is_pos])
is_ratio_r = 1.0 / (1.0 + isRatios[is_pos])
}
// Now decode all samples in this scale factor band
for i := sfb_start; i < sfb_stop; i++ {
// https://github.com/technosaurus/PDMP3/issues/3
f.mainData.Is[gr][0][i] *= is_ratio_l
f.mainData.Is[gr][1][i] *= is_ratio_r
}
}
}
}
func (f *Frame) stereo(gr int) {
if f.header.UseMSStereo() {
// Determine how many frequency lines to transform
i := 1
if f.sideInfo.Count1[gr][0] > f.sideInfo.Count1[gr][1] {
i = 0
}
max_pos := int(f.sideInfo.Count1[gr][i])
// Do the actual processing
const invSqrt2 = math.Sqrt2 / 2
for i := 0; i < max_pos; i++ {
left := (f.mainData.Is[gr][0][i] + f.mainData.Is[gr][1][i]) * invSqrt2
right := (f.mainData.Is[gr][0][i] - f.mainData.Is[gr][1][i]) * invSqrt2
f.mainData.Is[gr][0][i] = left
f.mainData.Is[gr][1][i] = right
}
}
if f.header.UseIntensityStereo() {
// Setup sampling frequency index
sfreq := f.header.SamplingFrequency()
// First band that is intensity stereo encoded is first band scale factor
// band on or above count1 frequency line. N.B.: Intensity stereo coding is
// only done for higher subbands, but logic is here for lower subbands.
// Determine type of block to process
if (f.sideInfo.WinSwitchFlag[gr][0] == 1) &&
(f.sideInfo.BlockType[gr][0] == 2) { // Short blocks
// Check if the first two subbands
// (=2*18 samples = 8 long or 3 short sfb's) uses long blocks
if f.sideInfo.MixedBlockFlag[gr][0] != 0 { // 2 longbl. sb first
for sfb := 0; sfb < 8; sfb++ { // First process 8 sfb's at start
// Is this scale factor band above count1 for the right channel?
if consts.SfBandIndicesSet[sfreq].L[sfb] >= f.sideInfo.Count1[gr][1] {
f.stereoProcessIntensityLong(gr, sfb)
}
}
// And next the remaining bands which uses short blocks
for sfb := 3; sfb < 12; sfb++ {
// Is this scale factor band above count1 for the right channel?
if consts.SfBandIndicesSet[sfreq].S[sfb]*3 >= f.sideInfo.Count1[gr][1] {
f.stereoProcessIntensityShort(gr, sfb)
}
}
} else { // Only short blocks
for sfb := 0; sfb < 12; sfb++ {
// Is this scale factor band above count1 for the right channel?
if consts.SfBandIndicesSet[sfreq].S[sfb]*3 >= f.sideInfo.Count1[gr][1] {
f.stereoProcessIntensityShort(gr, sfb)
}
}
}
} else { // Only long blocks
for sfb := 0; sfb < 21; sfb++ {
// Is this scale factor band above count1 for the right channel?
if consts.SfBandIndicesSet[sfreq].L[sfb] >= f.sideInfo.Count1[gr][1] {
f.stereoProcessIntensityLong(gr, sfb)
}
}
}
}
}
var (
cs = []float32{0.857493, 0.881742, 0.949629, 0.983315, 0.995518, 0.999161, 0.999899, 0.999993}
ca = []float32{-0.514496, -0.471732, -0.313377, -0.181913, -0.094574, -0.040966, -0.014199, -0.003700}
)
func (f *Frame) antialias(gr int, ch int) {
// No antialiasing is done for short blocks
if (f.sideInfo.WinSwitchFlag[gr][ch] == 1) &&
(f.sideInfo.BlockType[gr][ch] == 2) &&
(f.sideInfo.MixedBlockFlag[gr][ch]) == 0 {
return
}
// Setup the limit for how many subbands to transform
sblim := 32
if (f.sideInfo.WinSwitchFlag[gr][ch] == 1) &&
(f.sideInfo.BlockType[gr][ch] == 2) &&
(f.sideInfo.MixedBlockFlag[gr][ch] == 1) {
sblim = 2
}
// Do the actual antialiasing
for sb := 1; sb < sblim; sb++ {
for i := 0; i < 8; i++ {
li := 18*sb - 1 - i
ui := 18*sb + i
lb := f.mainData.Is[gr][ch][li]*cs[i] - f.mainData.Is[gr][ch][ui]*ca[i]
ub := f.mainData.Is[gr][ch][ui]*cs[i] + f.mainData.Is[gr][ch][li]*ca[i]
f.mainData.Is[gr][ch][li] = lb
f.mainData.Is[gr][ch][ui] = ub
}
}
}
func (f *Frame) hybridSynthesis(gr int, ch int) {
// Loop through all 32 subbands
for sb := 0; sb < 32; sb++ {
// Determine blocktype for this subband
bt := int(f.sideInfo.BlockType[gr][ch])
if (f.sideInfo.WinSwitchFlag[gr][ch] == 1) &&
(f.sideInfo.MixedBlockFlag[gr][ch] == 1) && (sb < 2) {
bt = 0
}
// Do the inverse modified DCT and windowing
in := make([]float32, 18)
for i := range in {
in[i] = f.mainData.Is[gr][ch][sb*18+i]
}
rawout := imdct.Win(in, bt)
// Overlapp add with stored vector into main_data vector
for i := 0; i < 18; i++ {
f.mainData.Is[gr][ch][sb*18+i] = rawout[i] + f.store[ch][sb][i]
f.store[ch][sb][i] = rawout[i+18]
}
}
}
func (f *Frame) frequencyInversion(gr int, ch int) {
for sb := 1; sb < 32; sb += 2 {
for i := 1; i < 18; i += 2 {
f.mainData.Is[gr][ch][sb*18+i] = -f.mainData.Is[gr][ch][sb*18+i]
}
}
}
var synthNWin = [64][32]float32{}
func init() {
for i := 0; i < 64; i++ {
for j := 0; j < 32; j++ {
synthNWin[i][j] =
float32(math.Cos(float64((16+i)*(2*j+1)) * (math.Pi / 64.0)))
}
}
}
var synthDtbl = [512]float32{
0.000000000, -0.000015259, -0.000015259, -0.000015259,
-0.000015259, -0.000015259, -0.000015259, -0.000030518,
-0.000030518, -0.000030518, -0.000030518, -0.000045776,
-0.000045776, -0.000061035, -0.000061035, -0.000076294,
-0.000076294, -0.000091553, -0.000106812, -0.000106812,
-0.000122070, -0.000137329, -0.000152588, -0.000167847,
-0.000198364, -0.000213623, -0.000244141, -0.000259399,
-0.000289917, -0.000320435, -0.000366211, -0.000396729,
-0.000442505, -0.000473022, -0.000534058, -0.000579834,
-0.000625610, -0.000686646, -0.000747681, -0.000808716,
-0.000885010, -0.000961304, -0.001037598, -0.001113892,
-0.001205444, -0.001296997, -0.001388550, -0.001480103,
-0.001586914, -0.001693726, -0.001785278, -0.001907349,
-0.002014160, -0.002120972, -0.002243042, -0.002349854,
-0.002456665, -0.002578735, -0.002685547, -0.002792358,
-0.002899170, -0.002990723, -0.003082275, -0.003173828,
0.003250122, 0.003326416, 0.003387451, 0.003433228,
0.003463745, 0.003479004, 0.003479004, 0.003463745,
0.003417969, 0.003372192, 0.003280640, 0.003173828,
0.003051758, 0.002883911, 0.002700806, 0.002487183,
0.002227783, 0.001937866, 0.001617432, 0.001266479,
0.000869751, 0.000442505, -0.000030518, -0.000549316,
-0.001098633, -0.001693726, -0.002334595, -0.003005981,
-0.003723145, -0.004486084, -0.005294800, -0.006118774,
-0.007003784, -0.007919312, -0.008865356, -0.009841919,
-0.010848999, -0.011886597, -0.012939453, -0.014022827,
-0.015121460, -0.016235352, -0.017349243, -0.018463135,
-0.019577026, -0.020690918, -0.021789551, -0.022857666,
-0.023910522, -0.024932861, -0.025909424, -0.026840210,
-0.027725220, -0.028533936, -0.029281616, -0.029937744,
-0.030532837, -0.031005859, -0.031387329, -0.031661987,
-0.031814575, -0.031845093, -0.031738281, -0.031478882,
0.031082153, 0.030517578, 0.029785156, 0.028884888,
0.027801514, 0.026535034, 0.025085449, 0.023422241,
0.021575928, 0.019531250, 0.017257690, 0.014801025,
0.012115479, 0.009231567, 0.006134033, 0.002822876,
-0.000686646, -0.004394531, -0.008316040, -0.012420654,
-0.016708374, -0.021179199, -0.025817871, -0.030609131,
-0.035552979, -0.040634155, -0.045837402, -0.051132202,
-0.056533813, -0.061996460, -0.067520142, -0.073059082,
-0.078628540, -0.084182739, -0.089706421, -0.095169067,
-0.100540161, -0.105819702, -0.110946655, -0.115921021,
-0.120697021, -0.125259399, -0.129562378, -0.133590698,
-0.137298584, -0.140670776, -0.143676758, -0.146255493,
-0.148422241, -0.150115967, -0.151306152, -0.151962280,
-0.152069092, -0.151596069, -0.150497437, -0.148773193,
-0.146362305, -0.143264771, -0.139450073, -0.134887695,
-0.129577637, -0.123474121, -0.116577148, -0.108856201,
0.100311279, 0.090927124, 0.080688477, 0.069595337,
0.057617188, 0.044784546, 0.031082153, 0.016510010,
0.001068115, -0.015228271, -0.032379150, -0.050354004,
-0.069168091, -0.088775635, -0.109161377, -0.130310059,
-0.152206421, -0.174789429, -0.198059082, -0.221984863,
-0.246505737, -0.271591187, -0.297210693, -0.323318481,
-0.349868774, -0.376800537, -0.404083252, -0.431655884,
-0.459472656, -0.487472534, -0.515609741, -0.543823242,
-0.572036743, -0.600219727, -0.628295898, -0.656219482,
-0.683914185, -0.711318970, -0.738372803, -0.765029907,
-0.791213989, -0.816864014, -0.841949463, -0.866363525,
-0.890090942, -0.913055420, -0.935195923, -0.956481934,
-0.976852417, -0.996246338, -1.014617920, -1.031936646,
-1.048156738, -1.063217163, -1.077117920, -1.089782715,
-1.101211548, -1.111373901, -1.120223999, -1.127746582,
-1.133926392, -1.138763428, -1.142211914, -1.144287109,
1.144989014, 1.144287109, 1.142211914, 1.138763428,
1.133926392, 1.127746582, 1.120223999, 1.111373901,
1.101211548, 1.089782715, 1.077117920, 1.063217163,
1.048156738, 1.031936646, 1.014617920, 0.996246338,
0.976852417, 0.956481934, 0.935195923, 0.913055420,
0.890090942, 0.866363525, 0.841949463, 0.816864014,
0.791213989, 0.765029907, 0.738372803, 0.711318970,
0.683914185, 0.656219482, 0.628295898, 0.600219727,
0.572036743, 0.543823242, 0.515609741, 0.487472534,
0.459472656, 0.431655884, 0.404083252, 0.376800537,
0.349868774, 0.323318481, 0.297210693, 0.271591187,
0.246505737, 0.221984863, 0.198059082, 0.174789429,
0.152206421, 0.130310059, 0.109161377, 0.088775635,
0.069168091, 0.050354004, 0.032379150, 0.015228271,
-0.001068115, -0.016510010, -0.031082153, -0.044784546,
-0.057617188, -0.069595337, -0.080688477, -0.090927124,
0.100311279, 0.108856201, 0.116577148, 0.123474121,
0.129577637, 0.134887695, 0.139450073, 0.143264771,
0.146362305, 0.148773193, 0.150497437, 0.151596069,
0.152069092, 0.151962280, 0.151306152, 0.150115967,
0.148422241, 0.146255493, 0.143676758, 0.140670776,
0.137298584, 0.133590698, 0.129562378, 0.125259399,
0.120697021, 0.115921021, 0.110946655, 0.105819702,
0.100540161, 0.095169067, 0.089706421, 0.084182739,
0.078628540, 0.073059082, 0.067520142, 0.061996460,
0.056533813, 0.051132202, 0.045837402, 0.040634155,
0.035552979, 0.030609131, 0.025817871, 0.021179199,
0.016708374, 0.012420654, 0.008316040, 0.004394531,
0.000686646, -0.002822876, -0.006134033, -0.009231567,
-0.012115479, -0.014801025, -0.017257690, -0.019531250,
-0.021575928, -0.023422241, -0.025085449, -0.026535034,
-0.027801514, -0.028884888, -0.029785156, -0.030517578,
0.031082153, 0.031478882, 0.031738281, 0.031845093,
0.031814575, 0.031661987, 0.031387329, 0.031005859,
0.030532837, 0.029937744, 0.029281616, 0.028533936,
0.027725220, 0.026840210, 0.025909424, 0.024932861,
0.023910522, 0.022857666, 0.021789551, 0.020690918,
0.019577026, 0.018463135, 0.017349243, 0.016235352,
0.015121460, 0.014022827, 0.012939453, 0.011886597,
0.010848999, 0.009841919, 0.008865356, 0.007919312,
0.007003784, 0.006118774, 0.005294800, 0.004486084,
0.003723145, 0.003005981, 0.002334595, 0.001693726,
0.001098633, 0.000549316, 0.000030518, -0.000442505,
-0.000869751, -0.001266479, -0.001617432, -0.001937866,
-0.002227783, -0.002487183, -0.002700806, -0.002883911,
-0.003051758, -0.003173828, -0.003280640, -0.003372192,
-0.003417969, -0.003463745, -0.003479004, -0.003479004,
-0.003463745, -0.003433228, -0.003387451, -0.003326416,
0.003250122, 0.003173828, 0.003082275, 0.002990723,
0.002899170, 0.002792358, 0.002685547, 0.002578735,
0.002456665, 0.002349854, 0.002243042, 0.002120972,
0.002014160, 0.001907349, 0.001785278, 0.001693726,
0.001586914, 0.001480103, 0.001388550, 0.001296997,
0.001205444, 0.001113892, 0.001037598, 0.000961304,
0.000885010, 0.000808716, 0.000747681, 0.000686646,
0.000625610, 0.000579834, 0.000534058, 0.000473022,
0.000442505, 0.000396729, 0.000366211, 0.000320435,
0.000289917, 0.000259399, 0.000244141, 0.000213623,
0.000198364, 0.000167847, 0.000152588, 0.000137329,
0.000122070, 0.000106812, 0.000106812, 0.000091553,
0.000076294, 0.000076294, 0.000061035, 0.000061035,
0.000045776, 0.000045776, 0.000030518, 0.000030518,
0.000030518, 0.000030518, 0.000015259, 0.000015259,
0.000015259, 0.000015259, 0.000015259, 0.000015259,
}
func (f *Frame) subbandSynthesis(gr int, ch int, out []byte) {
u_vec := make([]float32, 512)
s_vec := make([]float32, 32)
nch := f.header.NumberOfChannels()
// Setup the n_win windowing vector and the v_vec intermediate vector
for ss := 0; ss < 18; ss++ { // Loop through 18 samples in 32 subbands
copy(f.v_vec[ch][64:1024], f.v_vec[ch][0:1024-64])
d := f.mainData.Is[gr][ch]
for i := 0; i < 32; i++ { // Copy next 32 time samples to a temp vector
s_vec[i] = d[i*18+ss]
}
for i := 0; i < 64; i++ { // Matrix multiply input with n_win[][] matrix
sum := float32(0)
for j := 0; j < 32; j++ {
sum += synthNWin[i][j] * s_vec[j]
}
f.v_vec[ch][i] = sum
}
v := f.v_vec[ch]
for i := 0; i < 512; i += 64 { // Build the U vector
copy(u_vec[i:i+32], v[(i<<1):(i<<1)+32])
copy(u_vec[i+32:i+64], v[(i<<1)+96:(i<<1)+128])
}
for i := 0; i < 512; i++ { // Window by u_vec[i] with synthDtbl[i]
u_vec[i] *= synthDtbl[i]
}
for i := 0; i < 32; i++ { // Calc 32 samples,store in outdata vector
sum := float32(0)
for j := 0; j < 512; j += 32 {
sum += u_vec[j+i]
}
// sum now contains time sample 32*ss+i. Convert to 16-bit signed int
samp := int(sum * 32767)
if samp > 32767 {
samp = 32767
} else if samp < -32767 {
samp = -32767
}
s := int16(samp)
idx := 4 * (32*ss + i)
if nch == 1 {
// We always run in stereo mode and duplicate channels here for mono.
out[idx] = byte(s)
out[idx+1] = byte(s >> 8)
out[idx+2] = byte(s)
out[idx+3] = byte(s >> 8)
continue
}
if ch == 0 {
out[idx] = byte(s)
out[idx+1] = byte(s >> 8)
} else {
out[idx+2] = byte(s)
out[idx+3] = byte(s >> 8)
}
}
}
}