typedef struct { void (*arrange)(Monitor *, int, int, int, int, int, int, int); } LayoutArranger; typedef struct { void (*arrange)(Monitor *, int, int, int, int, int, int, int, int, int); } TileArranger; static const LayoutArranger flexlayouts[] = { { layout_no_split }, { layout_split_vertical }, { layout_split_horizontal }, { layout_split_centered_vertical }, { layout_split_centered_horizontal }, { layout_split_vertical_dual_stack }, { layout_split_horizontal_dual_stack }, { layout_floating_master }, { layout_split_vertical_fixed }, { layout_split_horizontal_fixed }, { layout_split_centered_vertical_fixed }, { layout_split_centered_horizontal_fixed }, { layout_split_vertical_dual_stack_fixed }, { layout_split_horizontal_dual_stack_fixed }, { layout_floating_master_fixed }, }; static const TileArranger flextiles[] = { { arrange_top_to_bottom }, { arrange_left_to_right }, { arrange_monocle }, { arrange_gapplessgrid }, { arrange_gapplessgrid_alt1 }, { arrange_gapplessgrid_alt2 }, { arrange_gridmode }, { arrange_horizgrid }, { arrange_dwindle }, { arrange_spiral }, { arrange_tatami }, }; static void getfactsforrange(Monitor *m, int an, int ai, int size, int *rest, float *fact) { int i; float facts; Client *c; int total = 0; facts = 0; for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) if (i >= ai && i < (ai + an)) #if CFACTS_PATCH facts += c->cfact; #else facts += 1; #endif // CFACTS_PATCH for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) if (i >= ai && i < (ai + an)) #if CFACTS_PATCH total += size * (c->cfact / facts); #else total += size / facts; #endif // CFACTS_PATCH *rest = size - total; *fact = facts; } #if IPC_PATCH || DWMC_PATCH static void setlayoutaxisex(const Arg *arg) { int axis, arr; axis = arg->i & 0x3; // lower two bytes indicates layout, master or stack1-2 arr = ((arg->i & 0xFC) >> 2); // remaining six upper bytes indicate arrangement if ((axis == 0 && abs(arr) > LAYOUT_LAST) || (axis > 0 && (arr > AXIS_LAST || arr < 0))) arr = 0; selmon->ltaxis[axis] = arr; #if PERTAG_PATCH selmon->pertag->ltaxis[selmon->pertag->curtag][axis] = selmon->ltaxis[axis]; #endif // PERTAG_PATCH arrange(selmon); } #endif // IPC_PATCH | DWMC_PATCH static void layout_no_split(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { (&flextiles[m->ltaxis[m->nmaster >= n ? MASTER : STACK]])->arrange(m, x, y, h, w, ih, iv, n, n, 0); } static void layout_split_vertical(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { /* Split master into master + stack if we have enough clients */ if (m->nmaster && n > m->nmaster) { layout_split_vertical_fixed(m, x, y, h, w, ih, iv, n); } else { layout_no_split(m, x, y, h, w, ih, iv, n); } } static void layout_split_vertical_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { int sw, sx; sw = (w - iv) * (1 - m->mfact); w = (w - iv) * m->mfact; if (m->ltaxis[LAYOUT] < 0) { // mirror sx = x; x += sw + iv; } else { sx = x + w + iv; } (&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0); (&flextiles[m->ltaxis[STACK]])->arrange(m, sx, y, h, sw, ih, iv, n, n - m->nmaster, m->nmaster); } static void layout_split_vertical_dual_stack(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { /* Split master into master + stack if we have enough clients */ if (!m->nmaster || n <= m->nmaster) { layout_no_split(m, x, y, h, w, ih, iv, n); } else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) { layout_split_vertical(m, x, y, h, w, ih, iv, n); } else { layout_split_vertical_dual_stack_fixed(m, x, y, h, w, ih, iv, n); } } static void layout_split_vertical_dual_stack_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { int sh, sw, sx, oy, sc; if (m->nstack) sc = m->nstack; else sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0); sw = (w - iv) * (1 - m->mfact); sh = (h - ih) / 2; w = (w - iv) * m->mfact; oy = y + sh + ih; if (m->ltaxis[LAYOUT] < 0) { // mirror sx = x; x += sw + iv; } else { sx = x + w + iv; } (&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0); (&flextiles[m->ltaxis[STACK]])->arrange(m, sx, y, sh, sw, ih, iv, n, sc, m->nmaster); (&flextiles[m->ltaxis[STACK2]])->arrange(m, sx, oy, sh, sw, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc); } static void layout_split_horizontal(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { /* Split master into master + stack if we have enough clients */ if (m->nmaster && n > m->nmaster) { layout_split_horizontal_fixed(m, x, y, h, w, ih, iv, n); } else { layout_no_split(m, x, y, h, w, ih, iv, n); } } static void layout_split_horizontal_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { int sh, sy; sh = (h - ih) * (1 - m->mfact); h = (h - ih) * m->mfact; if (m->ltaxis[LAYOUT] < 0) { // mirror sy = y; y += sh + ih; } else { sy = y + h + ih; } (&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0); (&flextiles[m->ltaxis[STACK]])->arrange(m, x, sy, sh, w, ih, iv, n, n - m->nmaster, m->nmaster); } static void layout_split_horizontal_dual_stack(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { /* Split master into master + stack if we have enough clients */ if (!m->nmaster || n <= m->nmaster) { layout_no_split(m, x, y, h, w, ih, iv, n); } else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) { layout_split_horizontal(m, x, y, h, w, ih, iv, n); } else { layout_split_horizontal_dual_stack_fixed(m, x, y, h, w, ih, iv, n); } } static void layout_split_horizontal_dual_stack_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { int sh, sy, ox, sc; if (m->nstack) sc = m->nstack; else sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0); sh = (h - ih) * (1 - m->mfact); h = (h - ih) * m->mfact; sw = (w - iv) / 2; ox = x + sw + iv; if (m->ltaxis[LAYOUT] < 0) { // mirror sy = y; y += sh + ih; } else { sy = y + h + ih; } (&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0); (&flextiles[m->ltaxis[STACK]])->arrange(m, x, sy, sh, sw, ih, iv, n, sc, m->nmaster); (&flextiles[m->ltaxis[STACK2]])->arrange(m, ox, sy, sh, sw, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc); } static void layout_split_centered_vertical(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { /* Split master into master + stack if we have enough clients */ if (!m->nmaster || n <= m->nmaster) { layout_no_split(m, x, y, h, w, ih, iv, n); } else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) { layout_split_vertical(m, x, y, h, w, ih, iv, n); } else { layout_split_centered_vertical_fixed(m, x, y, h, w, ih, iv, n); } } static void layout_split_centered_vertical_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { int sw, sx, ox, sc; if (m->nstack) sc = m->nstack; else sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0); sw = (w - 2*iv) * (1 - m->mfact) / 2; w = (w - 2*iv) * m->mfact; if (m->ltaxis[LAYOUT] < 0) { // mirror sx = x; x += sw + iv; ox = x + w + iv; } else { ox = x; x += sw + iv; sx = x + w + iv; } (&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0); (&flextiles[m->ltaxis[STACK]])->arrange(m, sx, y, h, sw, ih, iv, n, sc, m->nmaster); (&flextiles[m->ltaxis[STACK2]])->arrange(m, ox, y, h, sw, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc); } static void layout_split_centered_horizontal(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { /* Split master into master + stack if we have enough clients */ if (!m->nmaster || n <= m->nmaster) { layout_no_split(m, x, y, h, w, ih, iv, n); } else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) { layout_split_horizontal(m, x, y, h, w, ih, iv, n); } else { layout_split_centered_horizontal_fixed(m, x, y, h, w, ih, iv, n); } } static void layout_split_centered_horizontal_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { int sh, sy, oy, sc; if (m->nstack) sc = m->nstack; else sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0); sh = (h - 2*ih) * (1 - m->mfact) / 2; h = (h - 2*ih) * m->mfact; if (m->ltaxis[LAYOUT] < 0) { // mirror sy = y; y += sh + ih; oy = y + h + ih; } else { oy = y; y += sh + ih; sy = y + h + ih; } (&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0); (&flextiles[m->ltaxis[STACK]])->arrange(m, x, sy, sh, w, ih, iv, n, sc, m->nmaster); (&flextiles[m->ltaxis[STACK2]])->arrange(m, x, oy, sh, w, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc); } static void layout_floating_master(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { /* Split master into master + stack if we have enough clients */ if (!m->nmaster || n <= m->nmaster) { layout_no_split(m, x, y, h, w, ih, iv, n); } else { layout_floating_master_fixed(m, x, y, h, w, ih, iv, n); } } static void layout_floating_master_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) { int mh, mw; /* Draw stack area first */ (&flextiles[m->ltaxis[STACK]])->arrange(m, x, y, h, w, ih, iv, n, n - m->nmaster, m->nmaster); if (w > h) { mw = w * m->mfact; mh = h * 0.9; } else { mw = w * 0.9; mh = h * m->mfact; } x = x + (w - mw) / 2; y = y + (h - mh) / 2; (&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, mh, mw, ih, iv, n, m->nmaster, 0); } static void arrange_left_to_right(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) { int i, rest; float facts, fact = 1; Client *c; if (ai + an > n) an = n - ai; w -= iv * (an - 1); getfactsforrange(m, an, ai, w, &rest, &facts); for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) { if (i >= ai && i < (ai + an)) { #if CFACTS_PATCH fact = c->cfact; #endif // CFACTS_PATCH resize(c, x, y, w * (fact / facts) + ((i - ai) < rest ? 1 : 0) - (2*c->bw), h - (2*c->bw), 0); x += WIDTH(c) + iv; } } } static void arrange_top_to_bottom(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) { int i, rest; float facts, fact = 1; Client *c; if (ai + an > n) an = n - ai; h -= ih * (an - 1); getfactsforrange(m, an, ai, h, &rest, &facts); for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) { if (i >= ai && i < (ai + an)) { #if CFACTS_PATCH fact = c->cfact; #endif // CFACTS_PATCH resize(c, x, y, w - (2*c->bw), h * (fact / facts) + ((i - ai) < rest ? 1 : 0) - (2*c->bw), 0); y += HEIGHT(c) + ih; } } } static void arrange_monocle(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) { int i; Client *c; for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) if (i >= ai && i < (ai + an)) resize(c, x, y, w - (2*c->bw), h - (2*c->bw), 0); } static void arrange_gridmode(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) { int i, cols, rows, ch, cw, cx, cy, cc, cr, chrest, cwrest; // counters Client *c; /* grid dimensions */ for (rows = 0; rows <= an/2; rows++) if (rows*rows >= an) break; cols = (rows && (rows - 1) * rows >= an) ? rows - 1 : rows; /* window geoms (cell height/width) */ ch = (h - ih * (rows - 1)) / (rows ? rows : 1); cw = (w - iv * (cols - 1)) / (cols ? cols : 1); chrest = h - ih * (rows - 1) - ch * rows; cwrest = w - iv * (cols - 1) - cw * cols; for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) { if (i >= ai && i < (ai + an)) { cc = ((i - ai) / rows); // client column number cr = ((i - ai) % rows); // client row number cx = x + cc * (cw + iv) + MIN(cc, cwrest); cy = y + cr * (ch + ih) + MIN(cr, chrest); resize(c, cx, cy, cw + (cc < cwrest ? 1 : 0) - 2*c->bw, ch + (cr < chrest ? 1 : 0) - 2*c->bw, False); } } } static void arrange_horizgrid(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) { int ntop, nbottom, rh, rest; /* Exception when there is only one client; don't split into two rows */ if (an == 1) { arrange_monocle(m, x, y, h, w, ih, iv, n, an, ai); return; } ntop = an / 2; nbottom = an - ntop; rh = (h - ih) / 2; rest = h - ih - rh * 2; arrange_left_to_right(m, x, y, rh + rest, w, ih, iv, n, ntop, ai); arrange_left_to_right(m, x, y + rh + ih + rest, rh, w, ih, iv, n, nbottom, ai + ntop); } static void arrange_gapplessgrid(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) { int i, cols, rows, ch, cw, cn, rn, cc, rrest, crest; // counters Client *c; /* grid dimensions */ for (cols = 1; cols <= an/2; cols++) if (cols*cols >= an) break; if (an == 5) /* set layout against the general calculation: not 1:2:2, but 2:3 */ cols = 2; rows = an/cols; cn = rn = cc = 0; // reset column no, row no, client count ch = (h - ih * (rows - 1)) / rows; rrest = (h - ih * (rows - 1)) - ch * rows; cw = (w - iv * (cols - 1)) / cols; crest = (w - iv * (cols - 1)) - cw * cols; for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) { if (i >= ai && i < (ai + an)) { if (cc/rows + 1 > cols - an%cols) { rows = an/cols + 1; ch = (h - ih * (rows - 1)) / rows; rrest = (h - ih * (rows - 1)) - ch * rows; } resize(c, x, y + rn*(ch + ih) + MIN(rn, rrest), cw + (cn < crest ? 1 : 0) - 2*c->bw, ch + (rn < rrest ? 1 : 0) - 2*c->bw, 0); rn++; cc++; if (rn >= rows) { rn = 0; x += cw + ih + (cn < crest ? 1 : 0); cn++; } } } } /* This version of gappless grid fills rows first */ static void arrange_gapplessgrid_alt1(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) { int i, cols, rows, rest, ch; /* grid dimensions */ for (cols = 1; cols <= an/2; cols++) if (cols*cols >= an) break; rows = (cols && (cols - 1) * cols >= an) ? cols - 1 : cols; ch = (h - ih * (rows - 1)) / (rows ? rows : 1); rest = (h - ih * (rows - 1)) - ch * rows; for (i = 0; i < rows; i++) { arrange_left_to_right(m, x, y, ch + (i < rest ? 1 : 0), w, ih, iv, n, MIN(cols, an - i*cols), ai + i*cols); y += ch + (i < rest ? 1 : 0) + ih; } } /* This version of gappless grid fills columns first */ static void arrange_gapplessgrid_alt2(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) { int i, cols, rows, rest, cw; /* grid dimensions */ for (rows = 0; rows <= an/2; rows++) if (rows*rows >= an) break; cols = (rows && (rows - 1) * rows >= an) ? rows - 1 : rows; cw = (w - iv * (cols - 1)) / (cols ? cols : 1); rest = (w - iv * (cols - 1)) - cw * cols; for (i = 0; i < cols; i++) { arrange_top_to_bottom(m, x, y, h, cw + (i < rest ? 1 : 0), ih, iv, n, MIN(rows, an - i*rows), ai + i*rows); x += cw + (i < rest ? 1 : 0) + iv; } } static void arrange_fibonacci(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai, int s) { int i, j, nv, hrest = 0, wrest = 0, nx = x, ny = y, nw = w, nh = h, r = 1; Client *c; for (i = 0, j = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), j++) { if (j >= ai && j < (ai + an)) { if (r) { if ((i % 2 && ((nh - ih) / 2) <= (bh + 2*c->bw)) || (!(i % 2) && ((nw - iv) / 2) <= (bh + 2*c->bw))) { r = 0; } if (r && i < an - 1) { if (i % 2) { nv = (nh - ih) / 2; hrest = nh - 2*nv - ih; nh = nv; } else { nv = (nw - iv) / 2; wrest = nw - 2*nv - iv; nw = nv; } if ((i % 4) == 2 && !s) nx += nw + iv; else if ((i % 4) == 3 && !s) ny += nh + ih; } if ((i % 4) == 0) { if (s) { ny += nh + ih; nh += hrest; } else { nh -= hrest; ny -= nh + ih; } } else if ((i % 4) == 1) { nx += nw + iv; nw += wrest; } else if ((i % 4) == 2) { ny += nh + ih; nh += hrest; if (i < n - 1) nw += wrest; } else if ((i % 4) == 3) { if (s) { nx += nw + iv; nw -= wrest; } else { nw -= wrest; nx -= nw + iv; nh += hrest; } } if (i == 0) { if (an != 1) { nw = (w - iv) - (w - iv) * (1 - m->mfact); wrest = 0; } ny = y; } else if (i == 1) nw = w - nw - iv; i++; } resize(c, nx, ny, nw - 2 * c->bw, nh - 2*c->bw, False); } } } static void arrange_dwindle(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) { arrange_fibonacci(m, x, y, h, w, ih, iv, n, an, ai, 1); } static void arrange_spiral(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) { arrange_fibonacci(m, x, y, h, w, ih, iv, n, an, ai, 0); } static void arrange_tatami(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) { unsigned int i, j, nx, ny, nw, nh, tnx, tny, tnw, tnh, nhrest, hrest, wrest, areas, mats, cats; Client *c; nx = x; ny = y; nw = w; nh = h; mats = an / 5; cats = an % 5; hrest = 0; wrest = 0; areas = mats + (cats > 0); nh = (h - ih * (areas - 1)) / areas; nhrest = (h - ih * (areas - 1)) % areas; for (i = 0, j = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), j++) { if (j >= ai && j < (ai + an)) { tnw = nw; tnx = nx; tnh = nh; tny = ny; if (j < ai + cats) { /* Arrange cats (all excess clients that can't be tiled as mats). Cats sleep on mats. */ switch (cats) { case 1: // fill break; case 2: // up and down if ((i % 5) == 0) //up tnh = (nh - ih) / 2 + (nh - ih) % 2; else if ((i % 5) == 1) { //down tny += (nh - ih) / 2 + (nh - ih) % 2 + ih; tnh = (nh - ih) / 2; } break; case 3: //bottom, up-left and up-right if ((i % 5) == 0) { // up-left tnw = (nw - iv) / 2 + (nw - iv) % 2; tnh = (nh - ih) * 2 / 3 + (nh - ih) * 2 % 3; } else if ((i % 5) == 1) { // up-right tnx += (nw - iv) / 2 + (nw - iv) % 2 + iv; tnw = (nw - iv) / 2; tnh = (nh - ih) * 2 / 3 + (nh - ih) * 2 % 3; } else if ((i % 5) == 2) { //bottom tnh = (nh - ih) / 3; tny += (nh - ih) * 2 / 3 + (nh - ih) * 2 % 3 + ih; } break; case 4: // bottom, left, right and top if ((i % 5) == 0) { //top hrest = (nh - 2 * ih) % 4; tnh = (nh - 2 * ih) / 4 + (hrest ? 1 : 0); } else if ((i % 5) == 1) { // left tnw = (nw - iv) / 2 + (nw - iv) % 2; tny += (nh - 2 * ih) / 4 + (hrest ? 1 : 0) + ih; tnh = (nh - 2 * ih) * 2 / 4 + (hrest > 1 ? 1 : 0); } else if ((i % 5) == 2) { // right tnx += (nw - iv) / 2 + (nw - iv) % 2 + iv; tnw = (nw - iv) / 2; tny += (nh - 2 * ih) / 4 + (hrest ? 1 : 0) + ih; tnh = (nh - 2 * ih) * 2 / 4 + (hrest > 1 ? 1 : 0); } else if ((i % 5) == 3) { // bottom tny += (nh - 2 * ih) / 4 + (hrest ? 1 : 0) + (nh - 2 * ih) * 2 / 4 + (hrest > 1 ? 1 : 0) + 2 * ih; tnh = (nh - 2 * ih) / 4 + (hrest > 2 ? 1 : 0); } break; } } else { /* Arrange mats. One mat is a collection of five clients arranged tatami style */ if (((i - cats) % 5) == 0) { if ((cats > 0) || ((i - cats) >= 5)) { tny = ny = ny + nh + (nhrest > 0 ? 1 : 0) + ih; --nhrest; } } switch ((i - cats) % 5) { case 0: // top-left-vert wrest = (nw - 2 * iv) % 3; hrest = (nh - 2 * ih) % 3; tnw = (nw - 2 * iv) / 3 + (wrest ? 1 : 0); tnh = (nh - 2 * ih) * 2 / 3 + hrest + iv; break; case 1: // top-right-hor tnx += (nw - 2 * iv) / 3 + (wrest ? 1 : 0) + iv; tnw = (nw - 2 * iv) * 2 / 3 + (wrest > 1 ? 1 : 0) + iv; tnh = (nh - 2 * ih) / 3 + (hrest ? 1 : 0); break; case 2: // center tnx += (nw - 2 * iv) / 3 + (wrest ? 1 : 0) + iv; tnw = (nw - 2 * iv) / 3 + (wrest > 1 ? 1 : 0); tny += (nh - 2 * ih) / 3 + (hrest ? 1 : 0) + ih; tnh = (nh - 2 * ih) / 3 + (hrest > 1 ? 1 : 0); break; case 3: // bottom-right-vert tnx += (nw - 2 * iv) * 2 / 3 + wrest + 2 * iv; tnw = (nw - 2 * iv) / 3; tny += (nh - 2 * ih) / 3 + (hrest ? 1 : 0) + ih; tnh = (nh - 2 * ih) * 2 / 3 + hrest + iv; break; case 4: // (oldest) bottom-left-hor tnw = (nw - 2 * iv) * 2 / 3 + wrest + iv; tny += (nh - 2 * ih) * 2 / 3 + hrest + 2 * iv; tnh = (nh - 2 * ih) / 3; break; } } resize(c, tnx, tny, tnw - 2 * c->bw, tnh - 2 * c->bw, False); ++i; } } } static void flextile(Monitor *m) { unsigned int n; int oh = 0, ov = 0, ih = 0, iv = 0; // gaps outer/inner horizontal/vertical #if VANITYGAPS_PATCH getgaps(m, &oh, &ov, &ih, &iv, &n); #else Client *c; for (n = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), n++); #endif // VANITYGAPS_PATCH if (m->lt[m->sellt]->preset.layout != m->ltaxis[LAYOUT] || m->lt[m->sellt]->preset.masteraxis != m->ltaxis[MASTER] || m->lt[m->sellt]->preset.stack1axis != m->ltaxis[STACK] || m->lt[m->sellt]->preset.stack2axis != m->ltaxis[STACK2]) setflexsymbols(m, n); else if (m->lt[m->sellt]->preset.symbolfunc != NULL) m->lt[m->sellt]->preset.symbolfunc(m, n); if (n == 0) return; #if VANITYGAPS_PATCH && !VANITYGAPS_MONOCLE_PATCH /* No outer gap if full screen monocle */ if (abs(m->ltaxis[MASTER]) == MONOCLE && (abs(m->ltaxis[LAYOUT]) == NO_SPLIT || n <= m->nmaster)) { oh = 0; ov = 0; } #endif // VANITYGAPS_PATCH && !VANITYGAPS_MONOCLE_PATCH (&flexlayouts[abs(m->ltaxis[LAYOUT])])->arrange(m, m->wx + ov, m->wy + oh, m->wh - 2*oh, m->ww - 2*ov, ih, iv, n); return; } static void setflexsymbols(Monitor *m, unsigned int n) { int l; char sym1, sym2, sym3; Client *c; if (n == 0) for (c = nexttiled(m->clients); c; c = nexttiled(c->next), n++); l = abs(m->ltaxis[LAYOUT]); if (m->ltaxis[MASTER] == MONOCLE && (l == NO_SPLIT || !m->nmaster || n <= m->nmaster)) { monoclesymbols(m, n); return; } if (m->ltaxis[STACK] == MONOCLE && (l == SPLIT_VERTICAL || l == SPLIT_HORIZONTAL_FIXED)) { decksymbols(m, n); return; } /* Layout symbols */ if (l == NO_SPLIT || !m->nmaster) { sym1 = sym2 = sym3 = (int)tilesymb[m->ltaxis[MASTER]]; } else { sym2 = layoutsymb[l]; if (m->ltaxis[LAYOUT] < 0) { sym1 = tilesymb[m->ltaxis[STACK]]; sym3 = tilesymb[m->ltaxis[MASTER]]; } else { sym1 = tilesymb[m->ltaxis[MASTER]]; sym3 = tilesymb[m->ltaxis[STACK]]; } } snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%c%c", sym1, sym2, sym3); } static void monoclesymbols(Monitor *m, unsigned int n) { if (n > 0) snprintf(m->ltsymbol, sizeof m->ltsymbol, "[%d]", n); else snprintf(m->ltsymbol, sizeof m->ltsymbol, "[M]"); } static void decksymbols(Monitor *m, unsigned int n) { if (n > m->nmaster) snprintf(m->ltsymbol, sizeof m->ltsymbol, "[]%d", n); else snprintf(m->ltsymbol, sizeof m->ltsymbol, "[D]"); } /* Mirror layout axis for flextile */ void mirrorlayout(const Arg *arg) { if (!selmon->lt[selmon->sellt]->arrange) return; selmon->ltaxis[LAYOUT] *= -1; #if PERTAG_PATCH selmon->pertag->ltaxis[selmon->pertag->curtag][0] = selmon->ltaxis[LAYOUT]; #endif // PERTAG_PATCH arrange(selmon); } /* Rotate layout axis for flextile */ void rotatelayoutaxis(const Arg *arg) { int incr = (arg->i > 0 ? 1 : -1); int axis = abs(arg->i) - 1; if (!selmon->lt[selmon->sellt]->arrange) return; if (axis == LAYOUT) { if (selmon->ltaxis[LAYOUT] >= 0) { selmon->ltaxis[LAYOUT] += incr; if (selmon->ltaxis[LAYOUT] >= LAYOUT_LAST) selmon->ltaxis[LAYOUT] = 0; else if (selmon->ltaxis[LAYOUT] < 0) selmon->ltaxis[LAYOUT] = LAYOUT_LAST - 1; } else { selmon->ltaxis[LAYOUT] -= incr; if (selmon->ltaxis[LAYOUT] <= -LAYOUT_LAST) selmon->ltaxis[LAYOUT] = 0; else if (selmon->ltaxis[LAYOUT] > 0) selmon->ltaxis[LAYOUT] = -LAYOUT_LAST + 1; } } else { selmon->ltaxis[axis] += incr; if (selmon->ltaxis[axis] >= AXIS_LAST) selmon->ltaxis[axis] = 0; else if (selmon->ltaxis[axis] < 0) selmon->ltaxis[axis] = AXIS_LAST - 1; } #if PERTAG_PATCH selmon->pertag->ltaxis[selmon->pertag->curtag][axis] = selmon->ltaxis[axis]; #endif // PERTAG_PATCH arrange(selmon); setflexsymbols(selmon, 0); } void incnstack(const Arg *arg) { #if PERTAG_PATCH selmon->nstack = selmon->pertag->nstacks[selmon->pertag->curtag] = MAX(selmon->nstack + arg->i, 0); #else selmon->nstack = MAX(selmon->nstack + arg->i, 0); #endif // PERTAG_PATCH arrange(selmon); }