created tutorial13-hdr

pull/501/head
Benjamin Hansen 9 months ago
parent 509dc856a1
commit 0a083a9c12

50
Cargo.lock generated

@ -416,22 +416,22 @@ checksum = "572f695136211188308f16ad2ca5c851a712c464060ae6974944458eb83880ba"
[[package]]
name = "bytemuck"
version = "1.12.1"
version = "1.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2f5715e491b5a1598fc2bef5a606847b5dc1d48ea625bd3c02c00de8285591da"
checksum = "17febce684fd15d89027105661fec94afb475cb995fbc59d2865198446ba2eea"
dependencies = [
"bytemuck_derive",
]
[[package]]
name = "bytemuck_derive"
version = "1.2.1"
version = "1.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1b9e1f5fa78f69496407a27ae9ed989e3c3b072310286f5ef385525e4cbc24a9"
checksum = "fdde5c9cd29ebd706ce1b35600920a33550e402fc998a2e53ad3b42c3c47a192"
dependencies = [
"proc-macro2",
"quote",
"syn 1.0.102",
"syn 2.0.18",
]
[[package]]
@ -1194,6 +1194,15 @@ version = "0.27.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "221996f774192f0f718773def8201c4ae31f02616a54ccfc2d358bb0e5cefdec"
[[package]]
name = "glam"
version = "0.24.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42218cb640844e3872cc3c153dc975229e080a6c4733b34709ef445610550226"
dependencies = [
"bytemuck",
]
[[package]]
name = "glob"
version = "0.3.0"
@ -3012,7 +3021,12 @@ name = "snow"
version = "0.1.0"
dependencies = [
"anyhow",
"bytemuck",
"framework",
"glam",
"pollster",
"wgpu",
"winit",
]
[[package]]
@ -3517,6 +3531,32 @@ dependencies = [
"winit",
]
[[package]]
name = "tutorial13-hdr"
version = "0.1.0"
dependencies = [
"anyhow",
"bytemuck",
"cfg-if",
"cgmath",
"console_error_panic_hook",
"console_log",
"env_logger",
"fs_extra",
"glob",
"image",
"instant",
"log",
"pollster",
"reqwest",
"tobj 3.2.3",
"wasm-bindgen",
"wasm-bindgen-futures",
"web-sys",
"wgpu",
"winit",
]
[[package]]
name = "tutorial13-terrain"
version = "0.1.0"

@ -0,0 +1,45 @@
[package]
name = "tutorial13-hdr"
version = "0.1.0"
authors = ["Ben Hansen (sotrh)"]
edition = "2018"
[lib]
crate-type = ["cdylib", "rlib"]
[dependencies]
cfg-if = "1"
anyhow = "1.0"
bytemuck = { version = "1.12", features = [ "derive" ] }
cgmath = "0.18"
env_logger = "0.10"
pollster = "0.3"
log = "0.4"
tobj = { version = "3.2", features = ["async"]}
wgpu = { version = "0.17"}
winit = "0.28"
instant = "0.1"
[dependencies.image]
version = "0.24"
default-features = false
features = ["png", "jpeg"]
[target.'cfg(target_arch = "wasm32")'.dependencies]
reqwest = { version = "0.11" }
console_error_panic_hook = "0.1"
console_log = "1.0"
wgpu = { version = "0.17", features = ["webgl"]}
wasm-bindgen = "0.2"
wasm-bindgen-futures = "0.4"
web-sys = { version = "0.3", features = [
"Document",
"Window",
"Element",
"Location",
]}
[build-dependencies]
anyhow = "1.0"
fs_extra = "1.2"
glob = "0.3"

@ -0,0 +1,18 @@
use anyhow::*;
use fs_extra::copy_items;
use fs_extra::dir::CopyOptions;
use std::env;
fn main() -> Result<()> {
// This tells cargo to rerun this script if something in /res/ changes.
println!("cargo:rerun-if-changed=res/*");
let out_dir = env::var("OUT_DIR")?;
let mut copy_options = CopyOptions::new();
copy_options.overwrite = true;
let mut paths_to_copy = Vec::new();
paths_to_copy.push("res/");
copy_items(&paths_to_copy, out_dir, &copy_options)?;
Ok(())
}

@ -0,0 +1,29 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Pong with WASM</title>
</head>
<body>
<div id="wasm-example"></div>
<script type="module">
import init from "./pkg/tutorial12_camera.js";
init().then(() => {
console.log("WASM Loaded");
});
</script>
<style>
body {
background-color: #444;
}
canvas {
background-color: black;
}
</style>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

@ -0,0 +1,14 @@
# Blender MTL File: 'cube.blend'
# Material Count: 1
newmtl Material.001
Ns 323.999994
Ka 1.000000 1.000000 1.000000
Kd 0.800000 0.800000 0.800000
Ks 0.500000 0.500000 0.500000
Ke 0.000000 0.000000 0.000000
Ni 1.450000
d 1.000000
illum 2
map_Bump cube-normal.png
map_Kd cube-diffuse.jpg

File diff suppressed because it is too large Load Diff

@ -0,0 +1,196 @@
use cgmath::*;
use std::f32::consts::FRAC_PI_2;
use std::time::Duration;
use winit::dpi::PhysicalPosition;
use winit::event::*;
#[rustfmt::skip]
pub const OPENGL_TO_WGPU_MATRIX: cgmath::Matrix4<f32> = cgmath::Matrix4::new(
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0,
);
const SAFE_FRAC_PI_2: f32 = FRAC_PI_2 - 0.0001;
#[derive(Debug)]
pub struct Camera {
pub position: Point3<f32>,
yaw: Rad<f32>,
pitch: Rad<f32>,
}
impl Camera {
pub fn new<V: Into<Point3<f32>>, Y: Into<Rad<f32>>, P: Into<Rad<f32>>>(
position: V,
yaw: Y,
pitch: P,
) -> Self {
Self {
position: position.into(),
yaw: yaw.into(),
pitch: pitch.into(),
}
}
pub fn calc_matrix(&self) -> Matrix4<f32> {
let (sin_pitch, cos_pitch) = self.pitch.0.sin_cos();
let (sin_yaw, cos_yaw) = self.yaw.0.sin_cos();
Matrix4::look_to_rh(
self.position,
Vector3::new(cos_pitch * cos_yaw, sin_pitch, cos_pitch * sin_yaw).normalize(),
Vector3::unit_y(),
)
}
}
pub struct Projection {
aspect: f32,
fovy: Rad<f32>,
znear: f32,
zfar: f32,
}
impl Projection {
pub fn new<F: Into<Rad<f32>>>(width: u32, height: u32, fovy: F, znear: f32, zfar: f32) -> Self {
Self {
aspect: width as f32 / height as f32,
fovy: fovy.into(),
znear,
zfar,
}
}
pub fn resize(&mut self, width: u32, height: u32) {
self.aspect = width as f32 / height as f32;
}
pub fn calc_matrix(&self) -> Matrix4<f32> {
OPENGL_TO_WGPU_MATRIX * perspective(self.fovy, self.aspect, self.znear, self.zfar)
}
}
#[derive(Debug)]
pub struct CameraController {
amount_left: f32,
amount_right: f32,
amount_forward: f32,
amount_backward: f32,
amount_up: f32,
amount_down: f32,
rotate_horizontal: f32,
rotate_vertical: f32,
scroll: f32,
speed: f32,
sensitivity: f32,
}
impl CameraController {
pub fn new(speed: f32, sensitivity: f32) -> Self {
Self {
amount_left: 0.0,
amount_right: 0.0,
amount_forward: 0.0,
amount_backward: 0.0,
amount_up: 0.0,
amount_down: 0.0,
rotate_horizontal: 0.0,
rotate_vertical: 0.0,
scroll: 0.0,
speed,
sensitivity,
}
}
pub fn process_keyboard(&mut self, key: VirtualKeyCode, state: ElementState) -> bool {
let amount = if state == ElementState::Pressed {
1.0
} else {
0.0
};
match key {
VirtualKeyCode::W | VirtualKeyCode::Up => {
self.amount_forward = amount;
true
}
VirtualKeyCode::S | VirtualKeyCode::Down => {
self.amount_backward = amount;
true
}
VirtualKeyCode::A | VirtualKeyCode::Left => {
self.amount_left = amount;
true
}
VirtualKeyCode::D | VirtualKeyCode::Right => {
self.amount_right = amount;
true
}
VirtualKeyCode::Space => {
self.amount_up = amount;
true
}
VirtualKeyCode::LShift => {
self.amount_down = amount;
true
}
_ => false,
}
}
pub fn process_mouse(&mut self, mouse_dx: f64, mouse_dy: f64) {
self.rotate_horizontal = mouse_dx as f32;
self.rotate_vertical = mouse_dy as f32;
}
pub fn process_scroll(&mut self, delta: &MouseScrollDelta) {
self.scroll = match delta {
// I'm assuming a line is about 100 pixels
MouseScrollDelta::LineDelta(_, scroll) => -scroll * 0.5,
MouseScrollDelta::PixelDelta(PhysicalPosition { y: scroll, .. }) => -*scroll as f32,
};
}
pub fn update_camera(&mut self, camera: &mut Camera, dt: Duration) {
let dt = dt.as_secs_f32();
// Move forward/backward and left/right
let (yaw_sin, yaw_cos) = camera.yaw.0.sin_cos();
let forward = Vector3::new(yaw_cos, 0.0, yaw_sin).normalize();
let right = Vector3::new(-yaw_sin, 0.0, yaw_cos).normalize();
camera.position += forward * (self.amount_forward - self.amount_backward) * self.speed * dt;
camera.position += right * (self.amount_right - self.amount_left) * self.speed * dt;
// Move in/out (aka. "zoom")
// Note: this isn't an actual zoom. The camera's position
// changes when zooming. I've added this to make it easier
// to get closer to an object you want to focus on.
let (pitch_sin, pitch_cos) = camera.pitch.0.sin_cos();
let scrollward =
Vector3::new(pitch_cos * yaw_cos, pitch_sin, pitch_cos * yaw_sin).normalize();
camera.position += scrollward * self.scroll * self.speed * self.sensitivity * dt;
self.scroll = 0.0;
// Move up/down. Since we don't use roll, we can just
// modify the y coordinate directly.
camera.position.y += (self.amount_up - self.amount_down) * self.speed * dt;
// Rotate
camera.yaw += Rad(self.rotate_horizontal) * self.sensitivity * dt;
camera.pitch += Rad(-self.rotate_vertical) * self.sensitivity * dt;
// If process_mouse isn't called every frame, these values
// will not get set to zero, and the camera will rotate
// when moving in a non cardinal direction.
self.rotate_horizontal = 0.0;
self.rotate_vertical = 0.0;
// Keep the camera's angle from going too high/low.
if camera.pitch < -Rad(SAFE_FRAC_PI_2) {
camera.pitch = -Rad(SAFE_FRAC_PI_2);
} else if camera.pitch > Rad(SAFE_FRAC_PI_2) {
camera.pitch = Rad(SAFE_FRAC_PI_2);
}
}
}

@ -0,0 +1,143 @@
use wgpu::Operations;
use crate::{create_render_pipeline, texture};
pub struct HdrPipeline {
pipeline: wgpu::RenderPipeline,
bind_group: wgpu::BindGroup,
texture: texture::Texture,
width: u32,
height: u32,
format: wgpu::TextureFormat,
layout: wgpu::BindGroupLayout,
}
impl HdrPipeline {
pub fn new(device: &wgpu::Device, config: &wgpu::SurfaceConfiguration) -> Self {
let width = config.width;
let height = config.height;
let format = wgpu::TextureFormat::Rgba16Float;
let texture = texture::Texture::create_2d_texture(
device,
width,
height,
format,
wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::RENDER_ATTACHMENT,
wgpu::FilterMode::Nearest,
Some("Hdr::texture"),
);
let layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("Hdr::layout"),
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
// The Rgba16Float format cannot be filtered
sample_type: wgpu::TextureSampleType::Float { filterable: true },
view_dimension: wgpu::TextureViewDimension::D2,
multisampled: false,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
});
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
label: Some("Hdr::bind_group"),
layout: &layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&texture.sampler),
},
],
});
let shader = wgpu::include_wgsl!("hdr.wgsl");
let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: None,
bind_group_layouts: &[&layout],
push_constant_ranges: &[],
});
let pipeline =
create_render_pipeline(device, &pipeline_layout, config.format, None, &[], shader);
Self {
pipeline,
bind_group,
layout,
texture,
width,
height,
format,
}
}
pub fn resize(&mut self, device: &wgpu::Device, width: u32, height: u32) {
self.texture = texture::Texture::create_2d_texture(
device,
width,
height,
wgpu::TextureFormat::Rgba16Float,
wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::RENDER_ATTACHMENT,
wgpu::FilterMode::Nearest,
Some("Hdr::texture"),
);
self.bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
label: Some("Hdr::bind_group"),
layout: &self.layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&self.texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&self.texture.sampler),
},
],
});
self.width = width;
self.height = height;
}
pub fn view(&self) -> &wgpu::TextureView {
&self.texture.view
}
pub fn format(&self) -> wgpu::TextureFormat {
self.format
}
pub fn process(&self, encoder: &mut wgpu::CommandEncoder, output: &wgpu::TextureView) {
let mut pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Hdr::process"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &output,
resolve_target: None,
ops: Operations {
load: wgpu::LoadOp::Load,
store: true,
},
})],
depth_stencil_attachment: None,
});
pass.set_pipeline(&self.pipeline);
pass.set_bind_group(0, &self.bind_group, &[]);
pass.draw(0..3, 0..1);
}
}

@ -0,0 +1,53 @@
// Maps HDR values to linear values
// Based on http://www.oscars.org/science-technology/sci-tech-projects/aces
fn aces_tone_map(hdr: vec3<f32>) -> vec3<f32> {
let m1 = mat3x3(
0.59719, 0.07600, 0.02840,
0.35458, 0.90834, 0.13383,
0.04823, 0.01566, 0.83777,
);
let m2 = mat3x3(
1.60475, -0.10208, -0.00327,
-0.53108, 1.10813, -0.07276,
-0.07367, -0.00605, 1.07602,
);
let v = m1 * hdr;
let a = v * (v + 0.0245786) - 0.000090537;
let b = v * (0.983729 * v + 0.4329510) + 0.238081;
return clamp(m2 * (a / b), vec3(0.0), vec3(1.0));
}
struct VertexOutput {
@location(0) uv: vec2<f32>,
@builtin(position) clip_position: vec4<f32>,
};
@vertex
fn vs_main(
@builtin(vertex_index) vi: u32,
) -> VertexOutput {
var out: VertexOutput;
out.uv = vec2<f32>(
f32((vi << 1u) & 2u),
f32(vi & 2u),
);
out.clip_position = vec4<f32>(out.uv * 2.0 - 1.0, 0.0, 1.0);
out.uv.y = 1.0 - out.uv.y;
return out;
}
@group(0)
@binding(0)
var hdr_image: texture_2d<f32>;
@group(0)
@binding(1)
var hdr_sampler: sampler;
@fragment
fn fs_main(vs: VertexOutput) -> @location(0) vec4<f32> {
let hdr = textureSample(hdr_image, hdr_sampler, vs.uv);
let sdr = aces_tone_map(hdr.rgb);
let size = vec2<f32>(textureDimensions(hdr_image));
return vec4(sdr, hdr.a);
}

@ -0,0 +1,773 @@
use std::iter;
use cgmath::prelude::*;
use wgpu::util::DeviceExt;
use winit::{
event::*,
event_loop::{ControlFlow, EventLoop},
window::Window,
};
#[cfg(target_arch = "wasm32")]
use wasm_bindgen::prelude::*;
mod camera;
mod hdr;
mod model;
mod resources;
mod texture;
use model::{DrawLight, DrawModel, Vertex};
const NUM_INSTANCES_PER_ROW: u32 = 10;
#[repr(C)]
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
struct CameraUniform {
view_position: [f32; 4],
view_proj: [[f32; 4]; 4],
}
impl CameraUniform {
fn new() -> Self {
Self {
view_position: [0.0; 4],
view_proj: cgmath::Matrix4::identity().into(),
}
}
// UPDATED!
fn update_view_proj(&mut self, camera: &camera::Camera, projection: &camera::Projection) {
self.view_position = camera.position.to_homogeneous().into();
self.view_proj = (projection.calc_matrix() * camera.calc_matrix()).into()
}
}
struct Instance {
position: cgmath::Vector3<f32>,
rotation: cgmath::Quaternion<f32>,
}
impl Instance {
fn to_raw(&self) -> InstanceRaw {
InstanceRaw {
model: (cgmath::Matrix4::from_translation(self.position)
* cgmath::Matrix4::from(self.rotation))
.into(),
normal: cgmath::Matrix3::from(self.rotation).into(),
}
}
}
#[repr(C)]
#[derive(Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
#[allow(dead_code)]
struct InstanceRaw {
model: [[f32; 4]; 4],
normal: [[f32; 3]; 3],
}
impl model::Vertex for InstanceRaw {
fn desc() -> wgpu::VertexBufferLayout<'static> {
use std::mem;
wgpu::VertexBufferLayout {
array_stride: mem::size_of::<InstanceRaw>() as wgpu::BufferAddress,
// We need to switch from using a step mode of Vertex to Instance
// This means that our shaders will only change to use the next
// instance when the shader starts processing a new instance
step_mode: wgpu::VertexStepMode::Instance,
attributes: &[
wgpu::VertexAttribute {
offset: 0,
// While our vertex shader only uses locations 0, and 1 now, in later tutorials we'll
// be using 2, 3, and 4, for Vertex. We'll start at slot 5 not conflict with them later
shader_location: 5,
format: wgpu::VertexFormat::Float32x4,
},
// A mat4 takes up 4 vertex slots as it is technically 4 vec4s. We need to define a slot
// for each vec4. We don't have to do this in code though.
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 4]>() as wgpu::BufferAddress,
shader_location: 6,
format: wgpu::VertexFormat::Float32x4,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 8]>() as wgpu::BufferAddress,
shader_location: 7,
format: wgpu::VertexFormat::Float32x4,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 12]>() as wgpu::BufferAddress,
shader_location: 8,
format: wgpu::VertexFormat::Float32x4,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 16]>() as wgpu::BufferAddress,
shader_location: 9,
format: wgpu::VertexFormat::Float32x3,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 19]>() as wgpu::BufferAddress,
shader_location: 10,
format: wgpu::VertexFormat::Float32x3,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 22]>() as wgpu::BufferAddress,
shader_location: 11,
format: wgpu::VertexFormat::Float32x3,
},
],
}
}
}
#[repr(C)]
#[derive(Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
struct LightUniform {
position: [f32; 3],
// Due to uniforms requiring 16 byte (4 float) spacing, we need to use a padding field here
_padding: u32,
color: [f32; 3],
_padding2: u32,
}
struct State {
window: Window,
surface: wgpu::Surface,
device: wgpu::Device,
queue: wgpu::Queue,
config: wgpu::SurfaceConfiguration,
render_pipeline: wgpu::RenderPipeline,
obj_model: model::Model,
camera: camera::Camera,
projection: camera::Projection,
camera_controller: camera::CameraController,
camera_uniform: CameraUniform,
camera_buffer: wgpu::Buffer,
camera_bind_group: wgpu::BindGroup,
instances: Vec<Instance>,
#[allow(dead_code)]
instance_buffer: wgpu::Buffer,
depth_texture: texture::Texture,
size: winit::dpi::PhysicalSize<u32>,
light_uniform: LightUniform,
light_buffer: wgpu::Buffer,
light_bind_group: wgpu::BindGroup,
light_render_pipeline: wgpu::RenderPipeline,
#[allow(dead_code)]
debug_material: model::Material,
mouse_pressed: bool,
hdr: hdr::HdrPipeline,
}
fn create_render_pipeline(
device: &wgpu::Device,
layout: &wgpu::PipelineLayout,
color_format: wgpu::TextureFormat,
depth_format: Option<wgpu::TextureFormat>,
vertex_layouts: &[wgpu::VertexBufferLayout],
shader: wgpu::ShaderModuleDescriptor,
) -> wgpu::RenderPipeline {
let shader = device.create_shader_module(shader);
device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some(&format!("{:?}", shader)),
layout: Some(layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: vertex_layouts,
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[Some(wgpu::ColorTargetState {
format: color_format,
blend: None,
write_mask: wgpu::ColorWrites::ALL,
})],
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
// Setting this to anything other than Fill requires Features::NON_FILL_POLYGON_MODE
polygon_mode: wgpu::PolygonMode::Fill,
// Requires Features::DEPTH_CLIP_CONTROL
unclipped_depth: false,
// Requires Features::CONSERVATIVE_RASTERIZATION
conservative: false,
},
depth_stencil: depth_format.map(|format| wgpu::DepthStencilState {
format,
depth_write_enabled: true,
depth_compare: wgpu::CompareFunction::Less,
stencil: wgpu::StencilState::default(),
bias: wgpu::DepthBiasState::default(),
}),
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
// If the pipeline will be used with a multiview render pass, this
// indicates how many array layers the attachments will have.
multiview: None,
})
}
impl State {
async fn new(window: Window) -> Self {
let size = window.inner_size();
// The instance is a handle to our GPU
// BackendBit::PRIMARY => Vulkan + Metal + DX12 + Browser WebGPU
let instance = wgpu::Instance::new(wgpu::InstanceDescriptor {
backends: wgpu::Backends::all(),
dx12_shader_compiler: Default::default(),
});
// # Safety
//
// The surface needs to live as long as the window that created it.
// State owns the window so this should be safe.
let surface = unsafe { instance.create_surface(&window) }.unwrap();
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::default(),
compatible_surface: Some(&surface),
force_fallback_adapter: false,
})
.await
.unwrap();
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
label: None,
features: wgpu::Features::empty(),
// UPDATED!
limits: wgpu::Limits::downlevel_defaults(),
},
None, // Trace path
)
.await
.unwrap();
let surface_caps = surface.get_capabilities(&adapter);
// Shader code in this tutorial assumes an Srgb surface texture. Using a different
// one will result all the colors comming out darker. If you want to support non
// Srgb surfaces, you'll need to account for that when drawing to the frame.
let surface_format = surface_caps
.formats
.iter()
.copied()
.find(|f| f.is_srgb())
.unwrap_or(surface_caps.formats[0]);
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface_format,
width: size.width,
height: size.height,
present_mode: surface_caps.present_modes[0],
alpha_mode: surface_caps.alpha_modes[0],
view_formats: vec![],
};
surface.configure(&device, &config);
let texture_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
view_dimension: wgpu::TextureViewDimension::D2,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
// normal map
wgpu::BindGroupLayoutEntry {
binding: 2,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
view_dimension: wgpu::TextureViewDimension::D2,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 3,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
label: Some("texture_bind_group_layout"),
});
// UPDATED!
let camera = camera::Camera::new((0.0, 5.0, 10.0), cgmath::Deg(-90.0), cgmath::Deg(-20.0));
let projection =
camera::Projection::new(config.width, config.height, cgmath::Deg(45.0), 0.1, 100.0);
let camera_controller = camera::CameraController::new(4.0, 0.4);
let mut camera_uniform = CameraUniform::new();
camera_uniform.update_view_proj(&camera, &projection);
let camera_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera Buffer"),
contents: bytemuck::cast_slice(&[camera_uniform]),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
});
const SPACE_BETWEEN: f32 = 3.0;
let instances = (0..NUM_INSTANCES_PER_ROW)
.flat_map(|z| {
(0..NUM_INSTANCES_PER_ROW).map(move |x| {
let x = SPACE_BETWEEN * (x as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0);
let z = SPACE_BETWEEN * (z as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0);
let position = cgmath::Vector3 { x, y: 0.0, z };
let rotation = if position.is_zero() {
cgmath::Quaternion::from_axis_angle(
cgmath::Vector3::unit_z(),
cgmath::Deg(0.0),
)
} else {
cgmath::Quaternion::from_axis_angle(position.normalize(), cgmath::Deg(45.0))
};
Instance { position, rotation }
})
})
.collect::<Vec<_>>();
let instance_data = instances.iter().map(Instance::to_raw).collect::<Vec<_>>();
let instance_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Instance Buffer"),
contents: bytemuck::cast_slice(&instance_data),
usage: wgpu::BufferUsages::VERTEX,
});
let camera_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX | wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("camera_bind_group_layout"),
});
let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: camera_buffer.as_entire_binding(),
}],
label: Some("camera_bind_group"),
});
let obj_model =
resources::load_model("cube.obj", &device, &queue, &texture_bind_group_layout)
.await
.unwrap();
let light_uniform = LightUniform {
position: [2.0, 2.0, 2.0],
_padding: 0,
color: [1.0, 1.0, 1.0],
_padding2: 0,
};
let light_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Light VB"),
contents: bytemuck::cast_slice(&[light_uniform]),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
});
let light_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX | wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: None,
});
let light_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &light_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: light_buffer.as_entire_binding(),
}],
label: None,
});
let depth_texture =
texture::Texture::create_depth_texture(&device, &config, "depth_texture");
let hdr = hdr::HdrPipeline::new(&device, &config);
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[
&texture_bind_group_layout,
&camera_bind_group_layout,
&light_bind_group_layout,
],
push_constant_ranges: &[],
});
let render_pipeline = {
let shader = wgpu::ShaderModuleDescriptor {
label: Some("Normal Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()),
};
create_render_pipeline(
&device,
&render_pipeline_layout,
hdr.format(),
Some(texture::Texture::DEPTH_FORMAT),
&[model::ModelVertex::desc(), InstanceRaw::desc()],
shader,
)
};
let light_render_pipeline = {
let layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Light Pipeline Layout"),
bind_group_layouts: &[&camera_bind_group_layout, &light_bind_group_layout],
push_constant_ranges: &[],
});
let shader = wgpu::ShaderModuleDescriptor {
label: Some("Light Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("light.wgsl").into()),
};
create_render_pipeline(
&device,
&layout,
hdr.format(),
Some(texture::Texture::DEPTH_FORMAT),
&[model::ModelVertex::desc()],
shader,
)
};
let debug_material = {
let diffuse_bytes = include_bytes!("../res/cobble-diffuse.png");
let normal_bytes = include_bytes!("../res/cobble-normal.png");
let diffuse_texture = texture::Texture::from_bytes(
&device,
&queue,
diffuse_bytes,
"res/alt-diffuse.png",
false,
)
.unwrap();
let normal_texture = texture::Texture::from_bytes(
&device,
&queue,
normal_bytes,
"res/alt-normal.png",
true,
)
.unwrap();
model::Material::new(
&device,
"alt-material",
diffuse_texture,
normal_texture,
&texture_bind_group_layout,
)
};
Self {
window,
surface,
device,
queue,
config,
render_pipeline,
obj_model,
camera,
projection,
camera_controller,
camera_buffer,
camera_bind_group,
camera_uniform,
instances,
instance_buffer,
depth_texture,
size,
light_uniform,
light_buffer,
light_bind_group,
light_render_pipeline,
#[allow(dead_code)]
debug_material,
mouse_pressed: false,
hdr, // NEW!
}
}
pub fn window(&self) -> &Window {
&self.window
}
fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
// UPDATED!
if new_size.width > 0 && new_size.height > 0 {
self.projection.resize(new_size.width, new_size.height);
self.hdr
.resize(&self.device, new_size.width, new_size.height);
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
self.depth_texture =
texture::Texture::create_depth_texture(&self.device, &self.config, "depth_texture");
}
}
// UPDATED!
fn input(&mut self, event: &WindowEvent) -> bool {
match event {
WindowEvent::KeyboardInput {
input:
KeyboardInput {
virtual_keycode: Some(key),
state,
..
},
..
} => self.camera_controller.process_keyboard(*key, *state),
WindowEvent::MouseWheel { delta, .. } => {
self.camera_controller.process_scroll(delta);
true
}
WindowEvent::MouseInput {
button: MouseButton::Left,
state,
..
} => {
self.mouse_pressed = *state == ElementState::Pressed;
true
}
_ => false,
}
}
fn update(&mut self, dt: std::time::Duration) {
// UPDATED!
self.camera_controller.update_camera(&mut self.camera, dt);
self.camera_uniform
.update_view_proj(&self.camera, &self.projection);
self.queue.write_buffer(
&self.camera_buffer,
0,
bytemuck::cast_slice(&[self.camera_uniform]),
);
// Update the light
let old_position: cgmath::Vector3<_> = self.light_uniform.position.into();
self.light_uniform.position =
(cgmath::Quaternion::from_axis_angle((0.0, 1.0, 0.0).into(), cgmath::Deg(1.0))
* old_position)
.into();
self.queue.write_buffer(
&self.light_buffer,
0,
bytemuck::cast_slice(&[self.light_uniform]),
);
}
fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
let output = self.surface.get_current_texture()?;
let view = output
.texture
.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: self.hdr.view(), // UPDATED!
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}),
store: true,
},
})],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
view: &self.depth_texture.view,
depth_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(1.0),
store: true,
}),
stencil_ops: None,
}),
});
render_pass.set_vertex_buffer(1, self.instance_buffer.slice(..));
render_pass.set_pipeline(&self.light_render_pipeline);
render_pass.draw_light_model(
&self.obj_model,
&self.camera_bind_group,
&self.light_bind_group,
);
render_pass.set_pipeline(&self.render_pipeline);
render_pass.draw_model_instanced(
&self.obj_model,
0..self.instances.len() as u32,
&self.camera_bind_group,
&self.light_bind_group,
);
}
// NEW!
// Apply tonemapping
self.hdr.process(&mut encoder, &view);
self.queue.submit(iter::once(encoder.finish()));
output.present();
Ok(())
}
}
#[cfg_attr(target_arch = "wasm32", wasm_bindgen(start))]
pub async fn run() {
cfg_if::cfg_if! {
if #[cfg(target_arch = "wasm32")] {
std::panic::set_hook(Box::new(console_error_panic_hook::hook));
console_log::init_with_level(log::Level::Info).expect("Could't initialize logger");
} else {
env_logger::init();
}
}
let event_loop = EventLoop::new();
let title = env!("CARGO_PKG_NAME");
let window = winit::window::WindowBuilder::new()
.with_title(title)
.build(&event_loop)
.unwrap();
#[cfg(target_arch = "wasm32")]
{
// Winit prevents sizing with CSS, so we have to set
// the size manually when on web.
use winit::dpi::PhysicalSize;
window.set_inner_size(PhysicalSize::new(450, 400));
use winit::platform::web::WindowExtWebSys;
web_sys::window()
.and_then(|win| win.document())
.and_then(|doc| {
let dst = doc.get_element_by_id("wasm-example")?;
let canvas = web_sys::Element::from(window.canvas());
dst.append_child(&canvas).ok()?;
Some(())
})
.expect("Couldn't append canvas to document body.");
}
let mut state = State::new(window).await; // NEW!
let mut last_render_time = instant::Instant::now();
event_loop.run(move |event, _, control_flow| {
*control_flow = ControlFlow::Poll;
match event {
Event::MainEventsCleared => state.window().request_redraw(),
// NEW!
Event::DeviceEvent {
event: DeviceEvent::MouseMotion{ delta, },
.. // We're not using device_id currently
} => if state.mouse_pressed {
state.camera_controller.process_mouse(delta.0, delta.1)
}
// UPDATED!
Event::WindowEvent {
ref event,
window_id,
} if window_id == state.window().id() && !state.input(event) => {
match event {
#[cfg(not(target_arch="wasm32"))]
WindowEvent::CloseRequested
| WindowEvent::KeyboardInput {
input:
KeyboardInput {
state: ElementState::Pressed,
virtual_keycode: Some(VirtualKeyCode::Escape),
..
},
..
} => *control_flow = ControlFlow::Exit,
WindowEvent::Resized(physical_size) => {
state.resize(*physical_size);
}
WindowEvent::ScaleFactorChanged { new_inner_size, .. } => {
state.resize(**new_inner_size);
}
_ => {}
}
}
// UPDATED!
Event::RedrawRequested(window_id) if window_id == state.window().id() => {
let now = instant::Instant::now();
let dt = now - last_render_time;
last_render_time = now;
state.update(dt);
match state.render() {
Ok(_) => {}
// Reconfigure the surface if it's lost or outdated
Err(wgpu::SurfaceError::Lost | wgpu::SurfaceError::Outdated) => state.resize(state.size),
// The system is out of memory, we should probably quit
Err(wgpu::SurfaceError::OutOfMemory) => *control_flow = ControlFlow::Exit,
// We're ignoring timeouts
Err(wgpu::SurfaceError::Timeout) => log::warn!("Surface timeout"),
}
}
_ => {}
}
});
}

@ -0,0 +1,42 @@
// Vertex shader
struct Camera {
view_pos: vec4<f32>,
view_proj: mat4x4<f32>,
}
@group(0) @binding(0)
var<uniform> camera: Camera;
struct Light {
position: vec3<f32>,
color: vec3<f32>,
}
@group(1) @binding(0)
var<uniform> light: Light;
struct VertexInput {
@location(0) position: vec3<f32>,
};
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) color: vec3<f32>,
};
@vertex
fn vs_main(
model: VertexInput,
) -> VertexOutput {
let scale = 0.25;
var out: VertexOutput;
out.clip_position = camera.view_proj * vec4<f32>(model.position * scale + light.position, 1.0);
out.color = light.color;
return out;
}
// Fragment shader
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
return vec4<f32>(in.color, 1.0);
}

@ -0,0 +1,5 @@
use tutorial13_hdr::run;
fn main() {
pollster::block_on(run());
}

@ -0,0 +1,316 @@
use std::ops::Range;
use crate::texture;
pub trait Vertex {
fn desc() -> wgpu::VertexBufferLayout<'static>;
}
#[repr(C)]
#[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)]
pub struct ModelVertex {
pub position: [f32; 3],
pub tex_coords: [f32; 2],
pub normal: [f32; 3],
pub tangent: [f32; 3],
pub bitangent: [f32; 3],
}
impl Vertex for ModelVertex {
fn desc() -> wgpu::VertexBufferLayout<'static> {
use std::mem;
wgpu::VertexBufferLayout {
array_stride: mem::size_of::<ModelVertex>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Vertex,
attributes: &[
wgpu::VertexAttribute {
offset: 0,
shader_location: 0,
format: wgpu::VertexFormat::Float32x3,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 3]>() as wgpu::BufferAddress,
shader_location: 1,
format: wgpu::VertexFormat::Float32x2,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 5]>() as wgpu::BufferAddress,
shader_location: 2,
format: wgpu::VertexFormat::Float32x3,
},
// Tangent and bitangent
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 8]>() as wgpu::BufferAddress,
shader_location: 3,
format: wgpu::VertexFormat::Float32x3,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 11]>() as wgpu::BufferAddress,
shader_location: 4,
format: wgpu::VertexFormat::Float32x3,
},
],
}
}
}
pub struct Material {
pub name: String,
pub diffuse_texture: texture::Texture,
pub normal_texture: texture::Texture,
pub bind_group: wgpu::BindGroup,
}
impl Material {
pub fn new(
device: &wgpu::Device,
name: &str,
diffuse_texture: texture::Texture,
normal_texture: texture::Texture,
layout: &wgpu::BindGroupLayout,
) -> Self {
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&diffuse_texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&diffuse_texture.sampler),
},
wgpu::BindGroupEntry {
binding: 2,
resource: wgpu::BindingResource::TextureView(&normal_texture.view),
},
wgpu::BindGroupEntry {
binding: 3,
resource: wgpu::BindingResource::Sampler(&normal_texture.sampler),
},
],
label: Some(name),
});
Self {
name: String::from(name),
diffuse_texture,
normal_texture,
bind_group,
}
}
}
pub struct Mesh {
pub name: String,
pub vertex_buffer: wgpu::Buffer,
pub index_buffer: wgpu::Buffer,
pub num_elements: u32,
pub material: usize,
}
pub struct Model {
pub meshes: Vec<Mesh>,
pub materials: Vec<Material>,
}
pub trait DrawModel<'a> {
fn draw_mesh(
&mut self,
mesh: &'a Mesh,
material: &'a Material,
camera_bind_group: &'a wgpu::BindGroup,
light_bind_group: &'a wgpu::BindGroup,
);
fn draw_mesh_instanced(
&mut self,
mesh: &'a Mesh,
material: &'a Material,
instances: Range<u32>,
camera_bind_group: &'a wgpu::BindGroup,
light_bind_group: &'a wgpu::BindGroup,
);
fn draw_model(
&mut self,
model: &'a Model,
camera_bind_group: &'a wgpu::BindGroup,
light_bind_group: &'a wgpu::BindGroup,
);
fn draw_model_instanced(
&mut self,
model: &'a Model,
instances: Range<u32>,
camera_bind_group: &'a wgpu::BindGroup,
light_bind_group: &'a wgpu::BindGroup,
);
fn draw_model_instanced_with_material(
&mut self,
model: &'a Model,
material: &'a Material,
instances: Range<u32>,
camera_bind_group: &'a wgpu::BindGroup,
light_bind_group: &'a wgpu::BindGroup,
);
}
impl<'a, 'b> DrawModel<'b> for wgpu::RenderPass<'a>
where
'b: 'a,
{
fn draw_mesh(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
camera_bind_group: &'b wgpu::BindGroup,
light_bind_group: &'b wgpu::BindGroup,
) {
self.draw_mesh_instanced(mesh, material, 0..1, camera_bind_group, light_bind_group);
}
fn draw_mesh_instanced(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
instances: Range<u32>,
camera_bind_group: &'b wgpu::BindGroup,
light_bind_group: &'b wgpu::BindGroup,
) {
self.set_vertex_buffer(0, mesh.vertex_buffer.slice(..));
self.set_index_buffer(mesh.index_buffer.slice(..), wgpu::IndexFormat::Uint32);
self.set_bind_group(0, &material.bind_group, &[]);
self.set_bind_group(1, camera_bind_group, &[]);
self.set_bind_group(2, light_bind_group, &[]);
self.draw_indexed(0..mesh.num_elements, 0, instances);
}
fn draw_model(
&mut self,
model: &'b Model,
camera_bind_group: &'b wgpu::BindGroup,
light_bind_group: &'b wgpu::BindGroup,
) {
self.draw_model_instanced(model, 0..1, camera_bind_group, light_bind_group);
}
fn draw_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
camera_bind_group: &'b wgpu::BindGroup,
light_bind_group: &'b wgpu::BindGroup,
) {
for mesh in &model.meshes {
let material = &model.materials[mesh.material];
self.draw_mesh_instanced(
mesh,
material,
instances.clone(),
camera_bind_group,
light_bind_group,
);
}
}
fn draw_model_instanced_with_material(
&mut self,
model: &'b Model,
material: &'b Material,
instances: Range<u32>,
camera_bind_group: &'b wgpu::BindGroup,
light_bind_group: &'b wgpu::BindGroup,
) {
for mesh in &model.meshes {
self.draw_mesh_instanced(
mesh,
material,
instances.clone(),
camera_bind_group,
light_bind_group,
);
}
}
}
pub trait DrawLight<'a> {
fn draw_light_mesh(
&mut self,
mesh: &'a Mesh,
camera_bind_group: &'a wgpu::BindGroup,
light_bind_group: &'a wgpu::BindGroup,
);
fn draw_light_mesh_instanced(
&mut self,
mesh: &'a Mesh,
instances: Range<u32>,
camera_bind_group: &'a wgpu::BindGroup,
light_bind_group: &'a wgpu::BindGroup,
);
fn draw_light_model(
&mut self,
model: &'a Model,
camera_bind_group: &'a wgpu::BindGroup,
light_bind_group: &'a wgpu::BindGroup,
);
fn draw_light_model_instanced(
&mut self,
model: &'a Model,
instances: Range<u32>,
camera_bind_group: &'a wgpu::BindGroup,
light_bind_group: &'a wgpu::BindGroup,
);
}
impl<'a, 'b> DrawLight<'b> for wgpu::RenderPass<'a>
where
'b: 'a,
{
fn draw_light_mesh(
&mut self,
mesh: &'b Mesh,
camera_bind_group: &'b wgpu::BindGroup,
light_bind_group: &'b wgpu::BindGroup,
) {
self.draw_light_mesh_instanced(mesh, 0..1, camera_bind_group, light_bind_group);
}
fn draw_light_mesh_instanced(
&mut self,
mesh: &'b Mesh,
instances: Range<u32>,
camera_bind_group: &'b wgpu::BindGroup,
light_bind_group: &'b wgpu::BindGroup,
) {
self.set_vertex_buffer(0, mesh.vertex_buffer.slice(..));
self.set_index_buffer(mesh.index_buffer.slice(..), wgpu::IndexFormat::Uint32);
self.set_bind_group(0, camera_bind_group, &[]);
self.set_bind_group(1, light_bind_group, &[]);
self.draw_indexed(0..mesh.num_elements, 0, instances);
}
fn draw_light_model(
&mut self,
model: &'b Model,
camera_bind_group: &'b wgpu::BindGroup,
light_bind_group: &'b wgpu::BindGroup,
) {
self.draw_light_model_instanced(model, 0..1, camera_bind_group, light_bind_group);
}
fn draw_light_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
camera_bind_group: &'b wgpu::BindGroup,
light_bind_group: &'b wgpu::BindGroup,
) {
for mesh in &model.meshes {
self.draw_light_mesh_instanced(
mesh,
instances.clone(),
camera_bind_group,
light_bind_group,
);
}
}
}

@ -0,0 +1,219 @@
use std::io::{BufReader, Cursor};
use cfg_if::cfg_if;
use wgpu::util::DeviceExt;
use crate::{model, texture};
#[cfg(target_arch = "wasm32")]
fn format_url(file_name: &str) -> reqwest::Url {
let window = web_sys::window().unwrap();
let location = window.location();
let mut origin = location.origin().unwrap();
if !origin.ends_with("learn-wgpu") {
origin = format!("{}/learn-wgpu", origin);
}
let base = reqwest::Url::parse(&format!("{}/", origin,)).unwrap();
base.join(file_name).unwrap()
}
pub async fn load_string(file_name: &str) -> anyhow::Result<String> {
cfg_if! {
if #[cfg(target_arch = "wasm32")] {
let url = format_url(file_name);
let txt = reqwest::get(url)
.await?
.text()
.await?;
} else {
let path = std::path::Path::new(env!("OUT_DIR"))
.join("res")
.join(file_name);
let txt = std::fs::read_to_string(path)?;
}
}
Ok(txt)
}
pub async fn load_binary(file_name: &str) -> anyhow::Result<Vec<u8>> {
cfg_if! {
if #[cfg(target_arch = "wasm32")] {
let url = format_url(file_name);
let data = reqwest::get(url)
.await?
.bytes()
.await?
.to_vec();
} else {
let path = std::path::Path::new(env!("OUT_DIR"))
.join("res")
.join(file_name);
let data = std::fs::read(path)?;
}
}
Ok(data)
}
pub async fn load_texture(
file_name: &str,
is_normal_map: bool,
device: &wgpu::Device,
queue: &wgpu::Queue,
) -> anyhow::Result<texture::Texture> {
let data = load_binary(file_name).await?;
texture::Texture::from_bytes(device, queue, &data, file_name, is_normal_map)
}
pub async fn load_model(
file_name: &str,
device: &wgpu::Device,
queue: &wgpu::Queue,
layout: &wgpu::BindGroupLayout,
) -> anyhow::Result<model::Model> {
let obj_text = load_string(file_name).await?;
let obj_cursor = Cursor::new(obj_text);
let mut obj_reader = BufReader::new(obj_cursor);
let (models, obj_materials) = tobj::load_obj_buf_async(
&mut obj_reader,
&tobj::LoadOptions {
triangulate: true,
single_index: true,
..Default::default()
},
|p| async move {
let mat_text = load_string(&p).await.unwrap();
tobj::load_mtl_buf(&mut BufReader::new(Cursor::new(mat_text)))
},
)
.await?;
let mut materials = Vec::new();
for m in obj_materials? {
let diffuse_texture = load_texture(&m.diffuse_texture, false, device, queue).await?;
let normal_texture = load_texture(&m.normal_texture, true, device, queue).await?;
materials.push(model::Material::new(
device,
&m.name,
diffuse_texture,
normal_texture,
layout,
));
}
let meshes = models
.into_iter()
.map(|m| {
let mut vertices = (0..m.mesh.positions.len() / 3)
.map(|i| model::ModelVertex {
position: [
m.mesh.positions[i * 3],
m.mesh.positions[i * 3 + 1],
m.mesh.positions[i * 3 + 2],
],
tex_coords: [m.mesh.texcoords[i * 2], m.mesh.texcoords[i * 2 + 1]],
normal: [
m.mesh.normals[i * 3],
m.mesh.normals[i * 3 + 1],
m.mesh.normals[i * 3 + 2],
],
// We'll calculate these later
tangent: [0.0; 3],
bitangent: [0.0; 3],
})
.collect::<Vec<_>>();
let indices = &m.mesh.indices;
let mut triangles_included = vec![0; vertices.len()];
// Calculate tangents and bitangets. We're going to
// use the triangles, so we need to loop through the
// indices in chunks of 3
for c in indices.chunks(3) {
let v0 = vertices[c[0] as usize];
let v1 = vertices[c[1] as usize];
let v2 = vertices[c[2] as usize];
let pos0: cgmath::Vector3<_> = v0.position.into();
let pos1: cgmath::Vector3<_> = v1.position.into();
let pos2: cgmath::Vector3<_> = v2.position.into();
let uv0: cgmath::Vector2<_> = v0.tex_coords.into();
let uv1: cgmath::Vector2<_> = v1.tex_coords.into();
let uv2: cgmath::Vector2<_> = v2.tex_coords.into();
// Calculate the edges of the triangle
let delta_pos1 = pos1 - pos0;
let delta_pos2 = pos2 - pos0;
// This will give us a direction to calculate the
// tangent and bitangent
let delta_uv1 = uv1 - uv0;
let delta_uv2 = uv2 - uv0;
// Solving the following system of equations will
// give us the tangent and bitangent.
// delta_pos1 = delta_uv1.x * T + delta_u.y * B
// delta_pos2 = delta_uv2.x * T + delta_uv2.y * B
// Luckily, the place I found this equation provided
// the solution!
let r = 1.0 / (delta_uv1.x * delta_uv2.y - delta_uv1.y * delta_uv2.x);
let tangent = (delta_pos1 * delta_uv2.y - delta_pos2 * delta_uv1.y) * r;
// We flip the bitangent to enable right-handed normal
// maps with wgpu texture coordinate system
let bitangent = (delta_pos2 * delta_uv1.x - delta_pos1 * delta_uv2.x) * -r;
// We'll use the same tangent/bitangent for each vertex in the triangle
vertices[c[0] as usize].tangent =
(tangent + cgmath::Vector3::from(vertices[c[0] as usize].tangent)).into();
vertices[c[1] as usize].tangent =
(tangent + cgmath::Vector3::from(vertices[c[1] as usize].tangent)).into();
vertices[c[2] as usize].tangent =
(tangent + cgmath::Vector3::from(vertices[c[2] as usize].tangent)).into();
vertices[c[0] as usize].bitangent =
(bitangent + cgmath::Vector3::from(vertices[c[0] as usize].bitangent)).into();
vertices[c[1] as usize].bitangent =
(bitangent + cgmath::Vector3::from(vertices[c[1] as usize].bitangent)).into();
vertices[c[2] as usize].bitangent =
(bitangent + cgmath::Vector3::from(vertices[c[2] as usize].bitangent)).into();
// Used to average the tangents/bitangents
triangles_included[c[0] as usize] += 1;
triangles_included[c[1] as usize] += 1;
triangles_included[c[2] as usize] += 1;
}
// Average the tangents/bitangents
for (i, n) in triangles_included.into_iter().enumerate() {
let denom = 1.0 / n as f32;
let mut v = &mut vertices[i];
v.tangent = (cgmath::Vector3::from(v.tangent) * denom).into();
v.bitangent = (cgmath::Vector3::from(v.bitangent) * denom).into();
}
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some(&format!("{:?} Vertex Buffer", file_name)),
contents: bytemuck::cast_slice(&vertices),
usage: wgpu::BufferUsages::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some(&format!("{:?} Index Buffer", file_name)),
contents: bytemuck::cast_slice(&m.mesh.indices),
usage: wgpu::BufferUsages::INDEX,
});
model::Mesh {
name: file_name.to_string(),
vertex_buffer,
index_buffer,
num_elements: m.mesh.indices.len() as u32,
material: m.mesh.material_id.unwrap_or(0),
}
})
.collect::<Vec<_>>();
Ok(model::Model { meshes, materials })
}

@ -0,0 +1,115 @@
// Vertex shader
struct Camera {
view_pos: vec4<f32>,
view_proj: mat4x4<f32>,
}
@group(1) @binding(0)
var<uniform> camera: Camera;
struct Light {
position: vec3<f32>,
color: vec3<f32>,
}
@group(2) @binding(0)
var<uniform> light: Light;
struct VertexInput {
@location(0) position: vec3<f32>,
@location(1) tex_coords: vec2<f32>,
@location(2) normal: vec3<f32>,
@location(3) tangent: vec3<f32>,
@location(4) bitangent: vec3<f32>,
}
struct InstanceInput {
@location(5) model_matrix_0: vec4<f32>,
@location(6) model_matrix_1: vec4<f32>,
@location(7) model_matrix_2: vec4<f32>,
@location(8) model_matrix_3: vec4<f32>,
@location(9) normal_matrix_0: vec3<f32>,
@location(10) normal_matrix_1: vec3<f32>,
@location(11) normal_matrix_2: vec3<f32>,
}
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) tex_coords: vec2<f32>,
@location(1) tangent_position: vec3<f32>,
@location(2) tangent_light_position: vec3<f32>,
@location(3) tangent_view_position: vec3<f32>,
}
@vertex
fn vs_main(
model: VertexInput,
instance: InstanceInput,
) -> VertexOutput {
let model_matrix = mat4x4<f32>(
instance.model_matrix_0,
instance.model_matrix_1,
instance.model_matrix_2,
instance.model_matrix_3,
);
let normal_matrix = mat3x3<f32>(
instance.normal_matrix_0,
instance.normal_matrix_1,
instance.normal_matrix_2,
);
// Construct the tangent matrix
let world_normal = normalize(normal_matrix * model.normal);
let world_tangent = normalize(normal_matrix * model.tangent);
let world_bitangent = normalize(normal_matrix * model.bitangent);
let tangent_matrix = transpose(mat3x3<f32>(
world_tangent,
world_bitangent,
world_normal,
));
let world_position = model_matrix * vec4<f32>(model.position, 1.0);
var out: VertexOutput;
out.clip_position = camera.view_proj * world_position;
out.tex_coords = model.tex_coords;
out.tangent_position = tangent_matrix * world_position.xyz;
out.tangent_view_position = tangent_matrix * camera.view_pos.xyz;
out.tangent_light_position = tangent_matrix * light.position;
return out;
}
// Fragment shader
@group(0) @binding(0)
var t_diffuse: texture_2d<f32>;
@group(0)@binding(1)
var s_diffuse: sampler;
@group(0)@binding(2)
var t_normal: texture_2d<f32>;
@group(0) @binding(3)
var s_normal: sampler;
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
let object_color: vec4<f32> = textureSample(t_diffuse, s_diffuse, in.tex_coords);
let object_normal: vec4<f32> = textureSample(t_normal, s_normal, in.tex_coords);
// We don't need (or want) much ambient light, so 0.1 is fine
let ambient_strength = 0.1;
let ambient_color = light.color * ambient_strength;
// Create the lighting vectors
let tangent_normal = object_normal.xyz * 2.0 - 1.0;
let light_dir = normalize(in.tangent_light_position - in.tangent_position);
let view_dir = normalize(in.tangent_view_position - in.tangent_position);
let half_dir = normalize(view_dir + light_dir);
let diffuse_strength = max(dot(tangent_normal, light_dir), 0.0);
let diffuse_color = light.color * diffuse_strength;
let specular_strength = pow(max(dot(tangent_normal, half_dir), 0.0), 32.0);
let specular_color = specular_strength * light.color;
let result = (ambient_color + diffuse_color + specular_color) * object_color.xyz;
return vec4<f32>(result, object_color.a);
}

@ -0,0 +1,179 @@
use anyhow::*;
use image::GenericImageView;
pub struct Texture {
pub texture: wgpu::Texture,
pub view: wgpu::TextureView,
pub sampler: wgpu::Sampler,
}
impl Texture {
pub const DEPTH_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth32Float;
pub fn create_depth_texture(
device: &wgpu::Device,
config: &wgpu::SurfaceConfiguration,
label: &str,
) -> Self {
let size = wgpu::Extent3d {
width: config.width,
height: config.height,
depth_or_array_layers: 1,
};
let desc = wgpu::TextureDescriptor {
label: Some(label),
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: Self::DEPTH_FORMAT,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT | wgpu::TextureUsages::TEXTURE_BINDING,
view_formats: &[Self::DEPTH_FORMAT],
};
let texture = device.create_texture(&desc);
let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Nearest,
compare: Some(wgpu::CompareFunction::LessEqual),
lod_min_clamp: 0.0,
lod_max_clamp: 100.0,
..Default::default()
});
Self {
texture,
view,
sampler,
}
}
#[allow(dead_code)]
pub fn from_bytes(
device: &wgpu::Device,
queue: &wgpu::Queue,
bytes: &[u8],
label: &str,
is_normal_map: bool,
) -> Result<Self> {
let img = image::load_from_memory(bytes)?;
Self::from_image(device, queue, &img, Some(label), is_normal_map)
}
pub fn from_image(
device: &wgpu::Device,
queue: &wgpu::Queue,
img: &image::DynamicImage,
label: Option<&str>,
is_normal_map: bool,
) -> Result<Self> {
let dimensions = img.dimensions();
let rgba = img.to_rgba8();
let format = if is_normal_map {
wgpu::TextureFormat::Rgba8Unorm
} else {
wgpu::TextureFormat::Rgba8UnormSrgb
};
let usage = wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST;
let size = wgpu::Extent3d {
width: img.width(),
height: img.height(),
depth_or_array_layers: 1,
};
let texture = Self::create_2d_texture(
device,
size.width,
size.height,
format,
usage,
wgpu::FilterMode::Linear,
label,
);
queue.write_texture(
wgpu::ImageCopyTexture {
aspect: wgpu::TextureAspect::All,
texture: &texture.texture,
mip_level: 0,
origin: wgpu::Origin3d::ZERO,
},
&rgba,
wgpu::ImageDataLayout {
offset: 0,
bytes_per_row: Some(4 * dimensions.0),
rows_per_image: Some(dimensions.1),
},
size,
);
Ok(texture)
}
pub(crate) fn create_2d_texture(
device: &wgpu::Device,
width: u32,
height: u32,
format: wgpu::TextureFormat,
usage: wgpu::TextureUsages,
mag_filter: wgpu::FilterMode,
label: Option<&str>,
) -> Self {
let size = wgpu::Extent3d {
width,
height,
depth_or_array_layers: 1,
};
Self::create_texture(
device,
label,
size,
format,
usage,
wgpu::TextureDimension::D2,
mag_filter,
)
}
pub fn create_texture(
device: &wgpu::Device,
label: Option<&str>,
size: wgpu::Extent3d,
format: wgpu::TextureFormat,
usage: wgpu::TextureUsages,
dimension: wgpu::TextureDimension,
mag_filter: wgpu::FilterMode,
) -> Self {
let texture = device.create_texture(&wgpu::TextureDescriptor {
label,
size,
mip_level_count: 1,
sample_count: 1,
dimension,
format,
usage,
view_formats: &[],
});
let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter,
min_filter: wgpu::FilterMode::Nearest,
mipmap_filter: wgpu::FilterMode::Nearest,
..Default::default()
});
Self {
texture,
view,
sampler,
}
}
}

@ -103,6 +103,10 @@ impl Display {
self.config.height = height;
self.surface.configure(&self.device, &self.config);
}
pub fn surface(&self) -> &wgpu::Surface {
&self.surface
}
}
/**
@ -210,6 +214,7 @@ impl UniformBinding {
pub trait Demo: 'static + Sized {
fn init(display: &Display) -> Result<Self, Error>;
fn process_mouse(&mut self, dx: f64, dy: f64);
fn process_keyboard(&mut self, key: VirtualKeyCode, pressed: bool);
fn resize(&mut self, display: &Display);
fn update(&mut self, display: &Display, dt: Duration);
fn render(&mut self, display: &mut Display);
@ -274,6 +279,13 @@ pub async fn run<D: Demo>() -> Result<(), Error> {
display.resize(new_inner_size.width, new_inner_size.height);
demo.resize(&display);
}
WindowEvent::KeyboardInput { input: KeyboardInput {
virtual_keycode: Some(key),
state,
..
}, .. } => {
demo.process_keyboard(key, state == ElementState::Pressed);
}
_ => {}
}
}

@ -118,7 +118,7 @@ pub struct Model<'a> {
}
impl<'a> Model<'a> {
pub fn load<P: AsRef<Path>>(
pub fn load_obj<P: AsRef<Path>>(
device: &wgpu::Device,
queue: &wgpu::Queue,
layout: &wgpu::BindGroupLayout,

@ -1,7 +1,7 @@
extern crate framework;
// use anyhow::*;
use std::{iter, mem, num::NonZeroU32};
use std::{iter, mem};
async fn run() {
let instance = wgpu::Instance::new(wgpu::InstanceDescriptor {

@ -7,4 +7,9 @@ edition = "2021"
[dependencies]
anyhow = "1.0"
framework = { version = "0.1", path = "../framework"}
bytemuck = { version = "1.13.1", features = ["derive"] }
framework = { version = "0.1", path = "../framework"}
glam = { version = "0.24.1", features = ["bytemuck"] }
pollster = "0.3.0"
wgpu = "0.17.0"
winit = "0.28.6"

@ -0,0 +1,186 @@
use std::{time::Duration, f32::consts::FRAC_PI_2};
use winit::{event::{VirtualKeyCode, MouseScrollDelta}, dpi::PhysicalPosition};
const SAFE_FRAC_PI_2: f32 = FRAC_PI_2 - 0.0001;
#[derive(Debug)]
pub struct Camera {
pub position: glam::Vec3,
yaw: f32,
pitch: f32,
}
impl Camera {
pub fn new<V: Into<glam::Vec3>>(
position: V,
yaw: f32,
pitch: f32,
) -> Self {
Self {
position: position.into(),
yaw,
pitch,
}
}
pub fn calc_matrix(&self) -> glam::Mat4 {
let (sin_pitch, cos_pitch) = self.pitch.sin_cos();
let (sin_yaw, cos_yaw) = self.yaw.sin_cos();
glam::Mat4::look_to_rh(
self.position,
glam::Vec3::new(cos_pitch * cos_yaw, sin_pitch, cos_pitch * sin_yaw).normalize(),
glam::Vec3::Y,
)
}
}
pub struct Projection {
aspect: f32,
fovy: f32,
znear: f32,
zfar: f32,
}
impl Projection {
pub fn new<F: Into<f32>>(width: u32, height: u32, fovy: F, znear: f32, zfar: f32) -> Self {
Self {
aspect: width as f32 / height as f32,
fovy: fovy.into(),
znear,
zfar,
}
}
pub fn resize(&mut self, width: u32, height: u32) {
self.aspect = width as f32 / height as f32;
}
pub fn calc_matrix(&self) -> glam::Mat4 {
glam::Mat4::perspective_rh(self.fovy, self.aspect, self.znear, self.zfar)
}
}
#[derive(Debug)]
pub struct CameraController {
amount_left: f32,
amount_right: f32,
amount_forward: f32,
amount_backward: f32,
amount_up: f32,
amount_down: f32,
rotate_horizontal: f32,
rotate_vertical: f32,
scroll: f32,
speed: f32,
sensitivity: f32,
}
impl CameraController {
pub fn new(speed: f32, sensitivity: f32) -> Self {
Self {
amount_left: 0.0,
amount_right: 0.0,
amount_forward: 0.0,
amount_backward: 0.0,
amount_up: 0.0,
amount_down: 0.0,
rotate_horizontal: 0.0,
rotate_vertical: 0.0,
scroll: 0.0,
speed,
sensitivity,
}
}
pub fn process_keyboard(&mut self, key: VirtualKeyCode, pressed: bool) -> bool {
let amount = if pressed {
1.0
} else {
0.0
};
match key {
VirtualKeyCode::W | VirtualKeyCode::Up => {
self.amount_forward = amount;
true
}
VirtualKeyCode::S | VirtualKeyCode::Down => {
self.amount_backward = amount;
true
}
VirtualKeyCode::A | VirtualKeyCode::Left => {
self.amount_left = amount;
true
}
VirtualKeyCode::D | VirtualKeyCode::Right => {
self.amount_right = amount;
true
}
VirtualKeyCode::Space => {
self.amount_up = amount;
true
}
VirtualKeyCode::LShift => {
self.amount_down = amount;
true
}
_ => false,
}
}
pub fn process_mouse(&mut self, mouse_dx: f64, mouse_dy: f64) {
self.rotate_horizontal = mouse_dx as f32;
self.rotate_vertical = mouse_dy as f32;
}
pub fn process_scroll(&mut self, delta: &MouseScrollDelta) {
self.scroll = match delta {
// I'm assuming a line is about 100 pixels
MouseScrollDelta::LineDelta(_, scroll) => -scroll * 0.5,
MouseScrollDelta::PixelDelta(PhysicalPosition { y: scroll, .. }) => -*scroll as f32,
};
}
pub fn update_camera(&mut self, camera: &mut Camera, dt: Duration) {
let dt = dt.as_secs_f32();
// Move forward/backward and left/right
let (yaw_sin, yaw_cos) = camera.yaw.sin_cos();
let forward = glam::Vec3::new(yaw_cos, 0.0, yaw_sin).normalize();
let right = glam::Vec3::new(-yaw_sin, 0.0, yaw_cos).normalize();
camera.position += forward * (self.amount_forward - self.amount_backward) * self.speed * dt;
camera.position += right * (self.amount_right - self.amount_left) * self.speed * dt;
// Move in/out (aka. "zoom")
// Note: this isn't an actual zoom. The camera's position
// changes when zooming. I've added this to make it easier
// to get closer to an object you want to focus on.
let (pitch_sin, pitch_cos) = camera.pitch.sin_cos();
let scrollward =
glam::Vec3::new(pitch_cos * yaw_cos, pitch_sin, pitch_cos * yaw_sin).normalize();
camera.position += scrollward * self.scroll * self.speed * self.sensitivity * dt;
self.scroll = 0.0;
// Move up/down. Since we don't use roll, we can just
// modify the y coordinate directly.
camera.position.y += (self.amount_up - self.amount_down) * self.speed * dt;
// Rotate
camera.yaw += self.rotate_horizontal * self.sensitivity * dt;
camera.pitch += -self.rotate_vertical * self.sensitivity * dt;
// If process_mouse isn't called every frame, these values
// will not get set to zero, and the camera will rotate
// when moving in a non cardinal direction.
self.rotate_horizontal = 0.0;
self.rotate_vertical = 0.0;
// Keep the camera's angle from going too high/low.
if camera.pitch < -SAFE_FRAC_PI_2 {
camera.pitch = -SAFE_FRAC_PI_2;
} else if camera.pitch > SAFE_FRAC_PI_2 {
camera.pitch = SAFE_FRAC_PI_2;
}
}
}

@ -1,21 +1,390 @@
use anyhow::{Error, Result};
mod camera;
struct Snow {}
use std::f32::consts::PI;
use camera::{Camera, Projection, CameraController};
use wgpu::util::{BufferInitDescriptor, DeviceExt};
const MAX_PARTICLES: u32 = 1000;
const PARTICLE_SIZE: u64 = 4 * 4 * 2;
const PARTICLE_LAYOUT: wgpu::VertexBufferLayout<'static> = wgpu::VertexBufferLayout {
array_stride: PARTICLE_SIZE,
step_mode: wgpu::VertexStepMode::Instance,
attributes: &wgpu::vertex_attr_array![
0 => Float32x4,
1 => Float32x4,
],
};
#[derive(Debug, Clone, Copy, bytemuck::Pod, bytemuck::Zeroable)]
#[repr(C)]
struct ParticleConfig {
// The vec3 uniform is the same size as vec4
emitter_position: glam::Vec4,
particle_spread: glam::Vec4,
forces: glam::Vec4,
// These two get interpretted as vec4 by the shader
life_spread: glam::Vec2,
time_and_dt: glam::Vec2,
}
#[derive(Debug, Clone, Copy, bytemuck::Pod, bytemuck::Zeroable)]
#[repr(C)]
struct Uniforms {
view_proj: glam::Mat4,
}
struct Snow {
move_particles: wgpu::ComputePipeline,
particle_buffers: [wgpu::Buffer; 2],
particle_bind_groups: [wgpu::BindGroup; 2],
config: ParticleConfig,
config_buffer: wgpu::Buffer,
iteration: usize,
num_particles: u32,
camera: Camera,
projection: Projection,
uniforms: Uniforms,
uniform_buffer: wgpu::Buffer,
uniforms_bind_group: wgpu::BindGroup,
draw_particles: wgpu::RenderPipeline,
camera_controller: CameraController,
uniforms_dirty: bool,
time_since_spawn: f32,
spawn_timer: f32,
}
impl framework::Demo for Snow {
fn init(display: &framework::Display) -> Result<Self, Error> {
Ok(Self {})
fn init(display: &framework::Display) -> anyhow::Result<Self> {
let particle_layout =
display
.device
.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("particle_layout"),
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::COMPUTE,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::COMPUTE,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage { read_only: true },
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 2,
visibility: wgpu::ShaderStages::COMPUTE,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage { read_only: false },
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
],
});
let config = ParticleConfig {
emitter_position: glam::Vec4::new(0.0, 10.0, 0.0, 0.0),
particle_spread: glam::Vec4::new(10.0, 0.0, 10.0, 0.0),
forces: glam::Vec4::new(0.0, 0.0, 0.0, 0.0),
life_spread: glam::Vec2 { x: 1.0, y: 5.0 },
time_and_dt: glam::Vec2::ZERO,
};
let config_buffer = display.device.create_buffer_init(&BufferInitDescriptor {
label: Some("config_buffer"),
contents: bytemuck::bytes_of(&config),
usage: wgpu::BufferUsages::COPY_DST | wgpu::BufferUsages::UNIFORM,
});
let particle_buffers = [
create_particle_buffer(&display.device),
create_particle_buffer(&display.device),
];
let particle_bind_groups = [
create_particle_bind_group(
&display.device,
&particle_layout,
&config_buffer,
&particle_buffers[0],
&particle_buffers[1],
),
create_particle_bind_group(
&display.device,
&particle_layout,
&config_buffer,
&particle_buffers[1],
&particle_buffers[0],
),
];
let shader = display
.device
.create_shader_module(wgpu::include_wgsl!("snow.wgsl"));
let move_pipeline_layout =
display
.device
.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: None,
bind_group_layouts: &[&particle_layout],
push_constant_ranges: &[],
});
let move_particles =
display
.device
.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
label: None,
layout: Some(&move_pipeline_layout),
module: &shader,
entry_point: "move_particles",
});
let camera = Camera::new(glam::vec3(0.0, 0.0, 0.0), 0.0, 0.0);
let camera_controller = CameraController::new(0.1, 1.0);
let projection = Projection::new(
display.config.width,
display.config.height,
PI * 0.25,
0.1,
100.0,
);
let uniforms = Uniforms {
view_proj: projection.calc_matrix() * camera.calc_matrix(),
};
let uniform_buffer = display.device.create_buffer_init(&BufferInitDescriptor {
label: Some("uniform_buffer"),
contents: bytemuck::bytes_of(&uniforms),
usage: wgpu::BufferUsages::COPY_DST | wgpu::BufferUsages::UNIFORM,
});
let uniforms_bind_group_layout =
display
.device
.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: None,
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None },
count: None,
}],
});
let uniforms_bind_group = display.device.create_bind_group(&wgpu::BindGroupDescriptor {
label: Some("uniforms_bind_group"),
layout: &uniforms_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: uniform_buffer.as_entire_binding(),
}
],
});
let draw_particles_layout =
display
.device
.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: None,
bind_group_layouts: &[&uniforms_bind_group_layout],
push_constant_ranges: &[],
});
let draw_particles =
display
.device
.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("draw_particles"),
layout: Some(&draw_particles_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: &[PARTICLE_LAYOUT],
},
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::PointList,
..Default::default()
},
depth_stencil: None,
multisample: Default::default(),
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[Some(wgpu::ColorTargetState {
format: display.config.format,
blend: Some(wgpu::BlendState::REPLACE),
write_mask: wgpu::ColorWrites::ALL,
})],
}),
multiview: None,
});
Ok(Self {
config,
config_buffer,
iteration: 0,
num_particles: 0,
time_since_spawn: 0.0,
spawn_timer: 1.0,
particle_buffers,
particle_bind_groups,
move_particles,
camera,
camera_controller,
projection,
uniforms,
uniform_buffer,
uniforms_bind_group,
uniforms_dirty: false,
draw_particles,
})
}
fn process_mouse(&mut self, dx: f64, dy: f64) {
self.camera_controller.process_mouse(dx, dy);
self.uniforms_dirty = true;
}
fn process_keyboard(&mut self, key: winit::event::VirtualKeyCode, pressed: bool) {
self.camera_controller.process_keyboard(key, pressed);
self.uniforms_dirty = true;
}
fn resize(&mut self, display: &framework::Display) {
self.projection.resize(display.config.width, display.config.height);
self.uniforms_dirty = true;
self.uniforms_dirty = true;
}
fn process_mouse(&mut self, dx: f64, dy: f64) {}
fn update(&mut self, display: &framework::Display, dt: std::time::Duration) {
// Update uniforms
if self.uniforms_dirty {
self.uniforms_dirty = false;
self.camera_controller.update_camera(&mut self.camera, dt);
self.uniforms.view_proj = self.projection.calc_matrix() * self.camera.calc_matrix();
display.queue.write_buffer(&self.uniform_buffer, 0, bytemuck::bytes_of(&self.uniforms));
}
fn resize(&mut self, display: &framework::Display) {}
let dt = dt.as_secs_f32();
// Spawn particles
if self.time_since_spawn > self.spawn_timer {
self.time_since_spawn = 0.0;
self.num_particles = MAX_PARTICLES.min(self.num_particles + 1);
} else {
self.time_since_spawn += dt;
}
// Update the config
self.config.time_and_dt.x += dt;
self.config.time_and_dt.y = dt;
display
.queue
.write_buffer(&self.config_buffer, 0, bytemuck::bytes_of(&self.config));
// Update the actual particles
let mut encoder = display.device.create_command_encoder(&Default::default());
let mut move_pass = encoder.begin_compute_pass(&wgpu::ComputePassDescriptor {
label: Some("move_pass"),
});
move_pass.set_pipeline(&self.move_particles);
move_pass.set_bind_group(0, &self.particle_bind_groups[self.iteration % 2], &[]);
move_pass.dispatch_workgroups(self.num_particles, 1, 1);
drop(move_pass);
display.queue.submit([encoder.finish()]);
// Switch the buffers
self.iteration += 1;
}
fn update(&mut self, display: &framework::Display, dt: std::time::Duration) {}
fn render(&mut self, display: &mut framework::Display) {
let frame = match display.surface().get_current_texture() {
Ok(frame) => frame,
Err(wgpu::SurfaceError::Outdated) => return,
Err(e) => panic!("{}", e),
};
let view = frame.texture.create_view(&Default::default());
let mut encoder = display.device.create_command_encoder(&Default::default());
let mut draw_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("draw_pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color::BLACK),
store: true,
},
})],
depth_stencil_attachment: None,
});
draw_pass.set_pipeline(&self.draw_particles);
draw_pass.set_bind_group(0, &self.uniforms_bind_group, &[]);
draw_pass.set_vertex_buffer(0, self.particle_buffers[self.iteration % 2].slice(..));
draw_pass.draw(0..1, 0..self.num_particles);
drop(draw_pass);
display.queue.submit([encoder.finish()]);
frame.present();
}
}
fn create_particle_buffer(device: &wgpu::Device) -> wgpu::Buffer {
device.create_buffer(&wgpu::BufferDescriptor {
label: None,
size: PARTICLE_SIZE * MAX_PARTICLES as u64,
usage: wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::VERTEX,
mapped_at_creation: false,
})
}
fn render(&mut self, display: &mut framework::Display) {}
fn create_particle_bind_group(
device: &wgpu::Device,
layout: &wgpu::BindGroupLayout,
config_buffer: &wgpu::Buffer,
src_buffer: &wgpu::Buffer,
dst_buffer: &wgpu::Buffer,
) -> wgpu::BindGroup {
device.create_bind_group(&wgpu::BindGroupDescriptor {
label: None,
layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: config_buffer.as_entire_binding(),
},
wgpu::BindGroupEntry {
binding: 1,
resource: src_buffer.as_entire_binding(),
},
wgpu::BindGroupEntry {
binding: 2,
resource: dst_buffer.as_entire_binding(),
},
],
})
}
fn main() {
framework::run::<Snow>();
pollster::block_on(framework::run::<Snow>()).unwrap();
}

@ -0,0 +1,129 @@
struct Particle {
@location(0)
position_rotation: vec4<f32>,
@location(1)
velocity_life: vec4<f32>,
}
struct ParticleConfig {
emitter_position: vec3<f32>,
particle_spread: vec3<f32>,
forces: vec3<f32>,
life_spread_time_and_dt: vec4<f32>,
}
const TAU: f32 = 6.28318530718;
@group(0)
@binding(0)
var<uniform> config: ParticleConfig;
@group(0)
@binding(1)
var<storage, read> src_particles: array<Particle>;
@group(0)
@binding(2)
var<storage, read_write> dst_particles: array<Particle>;
@compute
@workgroup_size(64, 1, 1)
fn move_particles(
@builtin(global_invocation_id)
global_id: vec3<u32>,
) {
let src_p = src_particles[global_id.x];
var dst_p = dst_particles[global_id.x];
let life_spread = config.life_spread_time_and_dt.xy;
let t = config.life_spread_time_and_dt[2];
let dt = config.life_spread_time_and_dt[3];
var seed = vec2(t, f32(global_id.x));
if src_p.velocity_life.w <= 0.0 {
dst_p.velocity_life = vec4(vec3(0.0, 0.0, 0.0), mix(life_spread.x, life_spread.y, rand(&seed)));
dst_p.position_rotation = vec4(config.emitter_position + config.particle_spread * rand3(&seed), TAU * rand(&seed));
} else {
dst_p.position_rotation += vec4(src_p.velocity_life.xyz * dt, dt);
dst_p.velocity_life += vec4(config.forces * dt, -dt);
}
dst_particles[global_id.x] = dst_p;
}
struct VsOut {
@builtin(position)
frag_position: vec4<f32>,
@location(0)
texcoord: vec2<f32>,
}
struct Uniforms {
view_proj: vec4<f32>,
}
@group(0)
@binding(0)
var<uniform> uniforms: Uniforms;
@vertex
fn vs_main(
particle: Particle,
) -> VsOut {
let frag_position = uniforms.view_proj * vec4(particle.position_rotation.xyz, 1.0);
return VsOut(frag_position, frag_position.xy * 2.0 - 1.0);
}
@fragment
fn fs_main(
vs: VsOut,
) -> @location(0) vec4<f32> {
return vec4(1.0);
}
fn rand(seed: ptr<function, vec2<f32>>) -> f32 {
let n = snoise2(*seed);
(*seed).x = n;
return n;
}
fn rand2(seed: ptr<function, vec2<f32>>) -> vec2<f32> {
return vec2(
rand(seed),
rand(seed),
);
}
fn rand3(seed: ptr<function, vec2<f32>>) -> vec3<f32> {
return vec3(
rand(seed),
rand(seed),
rand(seed),
);
}
// https://gist.github.com/munrocket/236ed5ba7e409b8bdf1ff6eca5dcdc39
// MIT License. © Ian McEwan, Stefan Gustavson, Munrocket
// - Less condensed glsl implementation with comments can be found at https://weber.itn.liu.se/~stegu/jgt2012/article.pdf
fn permute3(x: vec3<f32>) -> vec3<f32> { return (((x * 34.) + 1.) * x) % vec3<f32>(289.); }
fn snoise2(v: vec2<f32>) -> f32 {
let C = vec4<f32>(0.211324865405187, 0.366025403784439, -0.577350269189626, 0.024390243902439);
var i: vec2<f32> = floor(v + dot(v, C.yy));
let x0 = v - i + dot(i, C.xx);
// I flipped the condition here from > to < as it fixed some artifacting I was observing
var i1: vec2<f32> = select(vec2<f32>(1., 0.), vec2<f32>(0., 1.), (x0.x < x0.y));
var x12: vec4<f32> = x0.xyxy + C.xxzz - vec4<f32>(i1, 0., 0.);
i = i % vec2<f32>(289.);
let p = permute3(permute3(i.y + vec3<f32>(0., i1.y, 1.)) + i.x + vec3<f32>(0., i1.x, 1.));
var m: vec3<f32> = max(0.5 - vec3<f32>(dot(x0, x0), dot(x12.xy, x12.xy), dot(x12.zw, x12.zw)), vec3<f32>(0.));
m = m * m;
m = m * m;
let x = 2. * fract(p * C.www) - 1.;
let h = abs(x) - 0.5;
let ox = floor(x + 0.5);
let a0 = x - ox;
m = m * (1.79284291400159 - 0.85373472095314 * (a0 * a0 + h * h));
let g = vec3<f32>(a0.x * x0.x + h.x * x0.y, a0.yz * x12.xz + h.yz * x12.yw);
return 130. * dot(m, g);
}
Loading…
Cancel
Save