started performance research

pull/68/head
Ben Hansen 4 years ago
parent eb20026731
commit 1a850cc1b1

16
Cargo.lock generated

@ -1262,6 +1262,22 @@ name = "percent-encoding"
version = "2.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "performance"
version = "0.1.0"
dependencies = [
"bytemuck 1.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
"cgmath 0.17.0 (registry+https://github.com/rust-lang/crates.io-index)",
"failure 0.1.6 (registry+https://github.com/rust-lang/crates.io-index)",
"futures 0.3.5 (registry+https://github.com/rust-lang/crates.io-index)",
"glob 0.3.0 (registry+https://github.com/rust-lang/crates.io-index)",
"image 0.23.4 (registry+https://github.com/rust-lang/crates.io-index)",
"shaderc 0.6.2 (registry+https://github.com/rust-lang/crates.io-index)",
"tobj 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)",
"wgpu 0.5.0 (registry+https://github.com/rust-lang/crates.io-index)",
"winit 0.22.1 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "pin-project"
version = "0.4.17"

@ -8,4 +8,7 @@ members = [
# showcase
"code/showcase/*",
# research
"code/research/*",
]

@ -0,0 +1,28 @@
[package]
name = "performance"
version = "0.1.0"
authors = ["Ben Hansen <bhbenjaminhansen@gmail.com>"]
edition = "2018"
[dependencies]
image = "0.23"
winit = "0.22"
failure = "0.1"
tobj = "1"
bytemuck = "1.2"
futures = "0.3.4"
wgpu = "0.5.0"
[dependencies.cgmath]
version = "0.17"
features = ["swizzle"]
[build-dependencies]
shaderc = "0.6"
glob = "0.3"
failure = "0.1"
[[bin]]
name = "performance"
path = "src/main.rs"

@ -0,0 +1,68 @@
use glob::glob;
use failure::bail;
use std::fs::{read_to_string, write};
use std::path::{PathBuf};
fn main() {
// This tells cargo to rerun this script if something in /src/ changes.
println!("cargo:rerun-if-changed=src/*");
// Collect all shaders recursively within /src/
let mut shader_paths = [
glob("./src/**/*.vert").unwrap(),
glob("./src/**/*.frag").unwrap(),
glob("./src/**/*.comp").unwrap(),
];
// This could be parallelized
let shaders = shader_paths.iter_mut()
.flatten()
.map(|glob_result| {
ShaderData::load(glob_result.unwrap()).unwrap()
})
.collect::<Vec<ShaderData>>();
let mut compiler = shaderc::Compiler::new().unwrap();
// This can't be parallelized. The [shaderc::Compiler] is not
// thread safe. Also, it creates a lot of resources. You could
// spawn multiple processes to handle this, but it would probably
// be better just to only compile shaders that have been changed
// recently.
for shader in shaders {
let compiled = compiler.compile_into_spirv(
&shader.src,
shader.kind,
&shader.src_path.to_str().unwrap(),
"main",
None
).unwrap();
write(shader.spv_path, compiled.as_binary_u8()).unwrap();
}
// panic!("Debugging...");
}
struct ShaderData {
src: String,
src_path: PathBuf,
spv_path: PathBuf,
kind: shaderc::ShaderKind,
}
impl ShaderData {
pub fn load(src_path: PathBuf) -> Result<Self, failure::Error> {
let extension = src_path.extension().unwrap().to_str().unwrap();
let kind = match extension {
"vert" => shaderc::ShaderKind::Vertex,
"frag" => shaderc::ShaderKind::Fragment,
"comp" => shaderc::ShaderKind::Compute,
_ => bail!("Unsupported shader: {}", src_path.display()),
};
let src = read_to_string(src_path.clone())?;
let spv_path = src_path.with_extension(format!("{}.spv", extension));
Ok(Self { src, src_path, spv_path, kind })
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

@ -0,0 +1,14 @@
# Blender MTL File: 'cube.blend'
# Material Count: 1
newmtl Material.001
Ns 323.999994
Ka 1.000000 1.000000 1.000000
Kd 0.800000 0.800000 0.800000
Ks 0.500000 0.500000 0.500000
Ke 0.000000 0.000000 0.000000
Ni 1.450000
d 1.000000
illum 2
map_Bump cube-normal.png
map_Kd cube-diffuse.jpg

File diff suppressed because it is too large Load Diff

@ -0,0 +1,16 @@
#version 450
layout(location = 0) in vec2 v_TexCoord;
layout(location = 1) out vec4 f_MipMap;
layout(set = 0, binding = 0) uniform texture2D t_Color;
layout(set = 0, binding = 1) uniform sampler s_Color;
void main() {
// The [textureLod] function will sample the supplied texture
// at the specified Level Of Detail (LOD). In our case the
// Lod is 0, meaning we want to use the texture with it's
// normal detail.
f_MipMap = textureLod(sampler2D(t_Color, s_Color), v_TexCoord, 0.0);
}

@ -0,0 +1,18 @@
#version 450
layout(location = 0) out vec2 v_TexCoord;
void main() {
// We need to know what vertex we are processing in
// order to use the right texture coord.
switch(gl_VertexIndex % 4) {
case 0: v_TexCoord = vec2(1.0, 0.0); break;
case 1: v_TexCoord = vec2(1.0, 1.0); break;
case 2: v_TexCoord = vec2(0.0, 0.0); break;
case 3: v_TexCoord = vec2(0.0, 1.0); break;
}
// We us `v_TexCoord` to generate gl_Position rather
// than supply a vertex buffer.
gl_Position = vec4(v_TexCoord * 2.0 - 1.0, 0.5, 1.0);
}

@ -0,0 +1,7 @@
#version 450
layout(location = 0) out vec4 f_Color;
void main() {
f_Color = vec4(1, 1, 0, 1);
}

@ -0,0 +1,8 @@
#version 450
layout(location=0) in vec3 v_color;
layout(location=0) out vec4 f_color;
void main() {
f_color = vec4(v_color, 1.0);
}

@ -0,0 +1,27 @@
#version 450
layout(location=0) in vec3 a_position;
layout(location=0) out vec4 v_color;
layout(set=0, binding=0)
uniform Uniforms {
vec3 u_view_position;
mat4 u_view_proj;
};
layout(set=1, binding=0)
uniform Light {
vec3 u_position;
vec3 u_color;
};
// Let's keep our light smaller than our other objects
float scale = 0.25;
void main() {
vec3 v_position = a_position * scale + u_position;
gl_Position = u_view_proj * vec4(v_position, 1);
v_color = vec4(u_color, 0);
}

@ -0,0 +1,663 @@
use cgmath::prelude::*;
use winit::{
event::*,
event_loop::{ControlFlow, EventLoop},
window::Window,
};
use futures::executor::block_on;
use std::time::{Duration, Instant};
mod pipeline;
mod model;
mod texture;
use model::{DrawLight, DrawModel, Vertex};
#[cfg_attr(rustfmt, rustfmt_skip)]
pub const OPENGL_TO_WGPU_MATRIX: cgmath::Matrix4<f32> = cgmath::Matrix4::new(
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.0, 0.0, 0.5, 1.0,
);
const NUM_INSTANCES_PER_ROW: u32 = 10;
struct Camera {
eye: cgmath::Point3<f32>,
target: cgmath::Point3<f32>,
up: cgmath::Vector3<f32>,
aspect: f32,
fovy: f32,
znear: f32,
zfar: f32,
}
impl Camera {
fn build_view_projection_matrix(&self) -> cgmath::Matrix4<f32> {
let view = cgmath::Matrix4::look_at(self.eye, self.target, self.up);
let proj = cgmath::perspective(cgmath::Deg(self.fovy), self.aspect, self.znear, self.zfar);
return proj * view;
}
}
#[repr(C)]
#[derive(Copy, Clone)]
struct Uniforms {
view_position: cgmath::Vector4<f32>,
view_proj: cgmath::Matrix4<f32>,
}
impl Uniforms {
fn new() -> Self {
Self {
view_position: Zero::zero(),
view_proj: cgmath::Matrix4::identity(),
}
}
fn update_view_proj(&mut self, camera: &Camera) {
self.view_position = camera.eye.to_homogeneous();
self.view_proj = OPENGL_TO_WGPU_MATRIX * camera.build_view_projection_matrix();
}
}
unsafe impl bytemuck::Zeroable for Uniforms {}
unsafe impl bytemuck::Pod for Uniforms {}
struct CameraController {
speed: f32,
is_up_pressed: bool,
is_down_pressed: bool,
is_forward_pressed: bool,
is_backward_pressed: bool,
is_left_pressed: bool,
is_right_pressed: bool,
}
impl CameraController {
fn new(speed: f32) -> Self {
Self {
speed,
is_up_pressed: false,
is_down_pressed: false,
is_forward_pressed: false,
is_backward_pressed: false,
is_left_pressed: false,
is_right_pressed: false,
}
}
fn process_events(&mut self, event: &WindowEvent) -> bool {
match event {
WindowEvent::KeyboardInput {
input:
KeyboardInput {
state,
virtual_keycode: Some(keycode),
..
},
..
} => {
let is_pressed = *state == ElementState::Pressed;
match keycode {
VirtualKeyCode::Space => {
self.is_up_pressed = is_pressed;
true
}
VirtualKeyCode::LShift => {
self.is_down_pressed = is_pressed;
true
}
VirtualKeyCode::W | VirtualKeyCode::Up => {
self.is_forward_pressed = is_pressed;
true
}
VirtualKeyCode::A | VirtualKeyCode::Left => {
self.is_left_pressed = is_pressed;
true
}
VirtualKeyCode::S | VirtualKeyCode::Down => {
self.is_backward_pressed = is_pressed;
true
}
VirtualKeyCode::D | VirtualKeyCode::Right => {
self.is_right_pressed = is_pressed;
true
}
_ => false,
}
}
_ => false,
}
}
fn update_camera(&self, camera: &mut Camera) {
let forward = (camera.target - camera.eye).normalize();
if self.is_forward_pressed {
camera.eye += forward * self.speed;
}
if self.is_backward_pressed {
camera.eye -= forward * self.speed;
}
let right = forward.cross(camera.up);
if self.is_right_pressed {
camera.eye += right * self.speed;
}
if self.is_left_pressed {
camera.eye -= right * self.speed;
}
}
}
struct Instance {
position: cgmath::Vector3<f32>,
rotation: cgmath::Quaternion<f32>,
}
impl Instance {
fn to_raw(&self) -> InstanceRaw {
InstanceRaw {
model: cgmath::Matrix4::from_translation(self.position) * cgmath::Matrix4::from(self.rotation),
}
}
}
#[derive(Copy, Clone)]
struct InstanceRaw {
#[allow(dead_code)]
model: cgmath::Matrix4<f32>,
}
unsafe impl bytemuck::Pod for InstanceRaw {}
unsafe impl bytemuck::Zeroable for InstanceRaw {}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
struct Light {
position: cgmath::Vector3<f32>,
// Due to uniforms requiring 16 byte (4 float) spacing, we need to use a padding field here
_padding: u32,
color: cgmath::Vector3<f32>,
}
unsafe impl bytemuck::Zeroable for Light {}
unsafe impl bytemuck::Pod for Light {}
struct State {
surface: wgpu::Surface,
device: wgpu::Device,
queue: wgpu::Queue,
sc_desc: wgpu::SwapChainDescriptor,
swap_chain: wgpu::SwapChain,
render_pipeline: wgpu::RenderPipeline,
obj_model: model::Model,
camera: Camera,
camera_controller: CameraController,
uniforms: Uniforms,
uniform_buffer: wgpu::Buffer,
uniform_bind_group: wgpu::BindGroup,
instances: Vec<Instance>,
#[allow(dead_code)]
instance_buffer: wgpu::Buffer,
depth_texture: texture::Texture,
size: winit::dpi::PhysicalSize<u32>,
light: Light,
light_buffer: wgpu::Buffer,
light_bind_group: wgpu::BindGroup,
light_render_pipeline: wgpu::RenderPipeline,
#[allow(dead_code)]
debug_material: model::Material,
}
impl State {
async fn new(window: &Window) -> Self {
let size = window.inner_size();
let surface = wgpu::Surface::create(window);
let adapter = wgpu::Adapter::request(
&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::Default,
compatible_surface: Some(&surface),
},
wgpu::BackendBit::PRIMARY, // Vulkan + Metal + DX12 + Browser WebGPU
).await.unwrap();
let (device, queue) = adapter.request_device(&wgpu::DeviceDescriptor {
extensions: wgpu::Extensions {
anisotropic_filtering: false,
},
limits: Default::default(),
}).await;
let sc_desc = wgpu::SwapChainDescriptor {
usage: wgpu::TextureUsage::OUTPUT_ATTACHMENT,
format: wgpu::TextureFormat::Bgra8UnormSrgb,
width: size.width,
height: size.height,
present_mode: wgpu::PresentMode::Fifo,
};
let swap_chain = device.create_swap_chain(&surface, &sc_desc);
let texture_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
bindings: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::SampledTexture {
multisampled: false,
component_type: wgpu::TextureComponentType::Float,
dimension: wgpu::TextureViewDimension::D2,
},
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Sampler { comparison: false },
},
// normal map
wgpu::BindGroupLayoutEntry {
binding: 2,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::SampledTexture {
multisampled: false,
component_type: wgpu::TextureComponentType::Float,
dimension: wgpu::TextureViewDimension::D2,
},
},
wgpu::BindGroupLayoutEntry {
binding: 3,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Sampler { comparison: false },
},
],
label: None,
});
let camera = Camera {
eye: (0.0, 5.0, -10.0).into(),
target: (0.0, 0.0, 0.0).into(),
up: cgmath::Vector3::unit_y(),
aspect: sc_desc.width as f32 / sc_desc.height as f32,
fovy: 45.0,
znear: 0.1,
zfar: 100.0,
};
let camera_controller = CameraController::new(0.2);
let mut uniforms = Uniforms::new();
uniforms.update_view_proj(&camera);
let uniform_buffer = device.create_buffer_with_data(
bytemuck::cast_slice(&[uniforms]),
wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST,
);
const SPACE_BETWEEN: f32 = 3.0;
let instances = (0..NUM_INSTANCES_PER_ROW)
.flat_map(|z| {
(0..NUM_INSTANCES_PER_ROW).map(move |x| {
let x = SPACE_BETWEEN * (x as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0);
let z = SPACE_BETWEEN * (z as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0);
let position = cgmath::Vector3 { x, y: 0.0, z };
let rotation = if position.is_zero() {
cgmath::Quaternion::from_axis_angle(
cgmath::Vector3::unit_z(),
cgmath::Deg(0.0),
)
} else {
cgmath::Quaternion::from_axis_angle(
position.clone().normalize(),
cgmath::Deg(45.0),
)
};
Instance { position, rotation }
})
})
.collect::<Vec<_>>();
let instance_data = instances
.iter()
.map(Instance::to_raw)
.collect::<Vec<_>>();
let instance_buffer_size =
instance_data.len() * std::mem::size_of::<cgmath::Matrix4<f32>>();
let instance_buffer = device.create_buffer_with_data(
bytemuck::cast_slice(&instance_data),
wgpu::BufferUsage::STORAGE_READ | wgpu::BufferUsage::COPY_DST,
);
let uniform_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
bindings: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::VERTEX | wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::UniformBuffer { dynamic: false },
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStage::VERTEX,
ty: wgpu::BindingType::StorageBuffer {
dynamic: false,
readonly: true,
},
},
],
label: None,
});
let uniform_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &uniform_bind_group_layout,
bindings: &[
wgpu::Binding {
binding: 0,
resource: wgpu::BindingResource::Buffer {
buffer: &uniform_buffer,
range: 0..std::mem::size_of_val(&uniforms) as wgpu::BufferAddress,
},
},
wgpu::Binding {
binding: 1,
resource: wgpu::BindingResource::Buffer {
buffer: &instance_buffer,
range: 0..instance_buffer_size as wgpu::BufferAddress,
},
},
],
label: None,
});
let (obj_model, cmds) =
model::Model::load(&device, &texture_bind_group_layout, "code/intermediate/tutorial10-lighting/src/res/cube.obj").unwrap();
queue.submit(&cmds);
let light = Light {
position: (2.0, 2.0, 2.0).into(),
_padding: 0,
color: (1.0, 1.0, 1.0).into(),
};
let light_buffer = device.create_buffer_with_data(
bytemuck::cast_slice(&[light]),
wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST,
);
let light_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
bindings: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::VERTEX | wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::UniformBuffer { dynamic: false },
}],
label: None,
});
let light_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &light_bind_group_layout,
bindings: &[wgpu::Binding {
binding: 0,
resource: wgpu::BindingResource::Buffer {
buffer: &light_buffer,
range: 0..std::mem::size_of_val(&light) as wgpu::BufferAddress,
},
}],
label: None,
});
let depth_texture = texture::Texture::create_depth_texture(&device, &sc_desc, "depth_texture");
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
bind_group_layouts: &[
&texture_bind_group_layout,
&uniform_bind_group_layout,
&light_bind_group_layout,
],
});
let render_pipeline = pipeline::RenderPipelineBuilder::new()
.layout(&render_pipeline_layout)
.color_solid(sc_desc.format)
.depth_format(texture::Texture::DEPTH_FORMAT)
.vertex_buffer(model::ModelVertex::desc())
.vertex_shader(include_bytes!("shader.vert.spv"))
.fragment_shader(include_bytes!("shader.frag.spv"))
.build(&device).unwrap();
let light_render_pipeline = {
let layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
bind_group_layouts: &[&uniform_bind_group_layout, &light_bind_group_layout],
});
pipeline::RenderPipelineBuilder::new()
.layout(&layout)
.color_solid(sc_desc.format)
.depth_format(texture::Texture::DEPTH_FORMAT)
.vertex_buffer(model::ModelVertex::desc())
.vertex_shader(include_bytes!("light.vert.spv"))
.fragment_shader(include_bytes!("light.frag.spv"))
.build(&device).unwrap()
};
let debug_material = {
let diffuse_bytes = include_bytes!("../res/cobble-diffuse.png");
let normal_bytes = include_bytes!("../res/cobble-normal.png");
let mut command_buffers = vec![];
let (diffuse_texture, cmds) = texture::Texture::from_bytes(&device, diffuse_bytes, "res/alt-diffuse.png", false).unwrap();
command_buffers.push(cmds);
let (normal_texture, cmds) = texture::Texture::from_bytes(&device, normal_bytes, "res/alt-normal.png", true).unwrap();
command_buffers.push(cmds);
queue.submit(&command_buffers);
model::Material::new(&device, "alt-material", diffuse_texture, normal_texture, &texture_bind_group_layout)
};
Self {
surface,
device,
queue,
sc_desc,
swap_chain,
render_pipeline,
obj_model,
camera,
camera_controller,
uniform_buffer,
uniform_bind_group,
uniforms,
instances,
instance_buffer,
depth_texture,
size,
light,
light_buffer,
light_bind_group,
light_render_pipeline,
#[allow(dead_code)]
debug_material,
}
}
fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
self.camera.aspect = self.sc_desc.width as f32 / self.sc_desc.height as f32;
self.size = new_size;
self.sc_desc.width = new_size.width;
self.sc_desc.height = new_size.height;
self.swap_chain = self.device.create_swap_chain(&self.surface, &self.sc_desc);
self.depth_texture = texture::Texture::create_depth_texture(&self.device, &self.sc_desc, "depth_texture");
}
fn input(&mut self, event: &WindowEvent) -> bool {
self.camera_controller.process_events(event)
}
fn update(&mut self, dt: Duration) {
self.camera_controller.update_camera(&mut self.camera);
self.uniforms.update_view_proj(&self.camera);
let mut encoder =
self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
let staging_buffer = self.device.create_buffer_with_data(
bytemuck::cast_slice(&[self.uniforms]),
wgpu::BufferUsage::COPY_SRC,
);
encoder.copy_buffer_to_buffer(
&staging_buffer,
0,
&self.uniform_buffer,
0,
std::mem::size_of::<Uniforms>() as wgpu::BufferAddress,
);
// Update the light
let old_position = self.light.position;
self.light.position =
cgmath::Quaternion::from_axis_angle(
(0.0, 1.0, 0.0).into(),
cgmath::Deg(45.0) * dt.as_secs_f32()
) * old_position;
let staging_buffer = self.device.create_buffer_with_data(
bytemuck::cast_slice(&[self.light]),
wgpu::BufferUsage::COPY_SRC,
);
encoder.copy_buffer_to_buffer(
&staging_buffer,
0,
&self.light_buffer,
0,
std::mem::size_of::<Light>() as wgpu::BufferAddress,
);
self.queue.submit(&[encoder.finish()]);
}
fn render(&mut self) {
let frame = self.swap_chain.get_next_texture()
.expect("Timeout getting texture");
let mut encoder = self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: None
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
color_attachments: &[wgpu::RenderPassColorAttachmentDescriptor {
attachment: &frame.view,
resolve_target: None,
load_op: wgpu::LoadOp::Clear,
store_op: wgpu::StoreOp::Store,
clear_color: wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
},
}],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachmentDescriptor {
attachment: &self.depth_texture.view,
depth_load_op: wgpu::LoadOp::Clear,
depth_store_op: wgpu::StoreOp::Store,
clear_depth: 1.0,
stencil_load_op: wgpu::LoadOp::Clear,
stencil_store_op: wgpu::StoreOp::Store,
clear_stencil: 0,
}),
});
render_pass.set_pipeline(&self.light_render_pipeline);
render_pass.draw_light_model(
&self.obj_model,
&self.uniform_bind_group,
&self.light_bind_group,
);
render_pass.set_pipeline(&self.render_pipeline);
render_pass.draw_model_instanced(
&self.obj_model,
0..self.instances.len() as u32,
&self.uniform_bind_group,
&self.light_bind_group,
);
}
self.queue.submit(&[encoder.finish()]);
}
}
fn main() {
let event_loop = EventLoop::new();
let title = env!("CARGO_PKG_NAME");
let window = winit::window::WindowBuilder::new()
.with_title(title)
.build(&event_loop)
.unwrap();
let mut state = block_on(State::new(&window));
let mut is_focused = false;
let mut last_update = Instant::now();
event_loop.run(move |event, _, control_flow| {
*control_flow = if is_focused {
ControlFlow::Poll
} else {
ControlFlow::Wait
};
match event {
Event::MainEventsCleared => if is_focused {
window.request_redraw();
}
Event::WindowEvent {
ref event,
window_id,
} if window_id == window.id() => {
if !state.input(event) {
match event {
WindowEvent::Focused(focused) => is_focused = *focused,
WindowEvent::CloseRequested => *control_flow = ControlFlow::Exit,
WindowEvent::KeyboardInput { input, .. } => match input {
KeyboardInput {
state: ElementState::Pressed,
virtual_keycode: Some(VirtualKeyCode::Escape),
..
} => {
*control_flow = ControlFlow::Exit;
}
_ => {}
},
WindowEvent::Resized(physical_size) => {
state.resize(*physical_size);
}
WindowEvent::ScaleFactorChanged { new_inner_size, .. } => {
state.resize(**new_inner_size);
}
_ => {}
}
}
}
Event::RedrawRequested(_) => {
let now = Instant::now();
let dt = now - last_update;
state.update(dt);
last_update = now;
state.render();
}
_ => {}
}
});
}

@ -0,0 +1,441 @@
use std::ops::Range;
use std::path::Path;
use crate::texture;
pub trait Vertex {
fn desc<'a>() -> wgpu::VertexBufferDescriptor<'a>;
}
#[repr(C)]
#[derive(Copy, Clone, Debug)]
pub struct ModelVertex {
position: cgmath::Vector3<f32>,
tex_coords: cgmath::Vector2<f32>,
normal: cgmath::Vector3<f32>,
tangent: cgmath::Vector3<f32>,
bitangent: cgmath::Vector3<f32>,
}
unsafe impl bytemuck::Zeroable for ModelVertex {}
unsafe impl bytemuck::Pod for ModelVertex {}
impl Vertex for ModelVertex {
fn desc<'a>() -> wgpu::VertexBufferDescriptor<'a> {
use std::mem;
wgpu::VertexBufferDescriptor {
stride: mem::size_of::<ModelVertex>() as wgpu::BufferAddress,
step_mode: wgpu::InputStepMode::Vertex,
attributes: &[
wgpu::VertexAttributeDescriptor {
offset: 0,
shader_location: 0,
format: wgpu::VertexFormat::Float3,
},
wgpu::VertexAttributeDescriptor {
offset: mem::size_of::<[f32; 3]>() as wgpu::BufferAddress,
shader_location: 1,
format: wgpu::VertexFormat::Float2,
},
wgpu::VertexAttributeDescriptor {
offset: mem::size_of::<[f32; 5]>() as wgpu::BufferAddress,
shader_location: 2,
format: wgpu::VertexFormat::Float3,
},
// Tangent and bitangent
wgpu::VertexAttributeDescriptor {
offset: mem::size_of::<[f32; 8]>() as wgpu::BufferAddress,
shader_location: 3,
format: wgpu::VertexFormat::Float3,
},
wgpu::VertexAttributeDescriptor {
offset: mem::size_of::<[f32; 11]>() as wgpu::BufferAddress,
shader_location: 4,
format: wgpu::VertexFormat::Float3,
},
],
}
}
}
pub struct Material {
pub name: String,
pub diffuse_texture: texture::Texture,
pub normal_texture: texture::Texture,
pub bind_group: wgpu::BindGroup,
}
impl Material {
pub fn new(
device: &wgpu::Device,
name: &str,
diffuse_texture: texture::Texture,
normal_texture: texture::Texture,
layout: &wgpu::BindGroupLayout,
) -> Self {
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout,
bindings: &[
wgpu::Binding {
binding: 0,
resource: wgpu::BindingResource::TextureView(&diffuse_texture.view),
},
wgpu::Binding {
binding: 1,
resource: wgpu::BindingResource::Sampler(&diffuse_texture.sampler),
},
wgpu::Binding {
binding: 2,
resource: wgpu::BindingResource::TextureView(&normal_texture.view),
},
wgpu::Binding {
binding: 3,
resource: wgpu::BindingResource::Sampler(&normal_texture.sampler),
},
],
label: Some(name),
});
Self {
name: String::from(name),
diffuse_texture,
normal_texture,
bind_group,
}
}
}
pub struct Mesh {
pub name: String,
pub vertex_buffer: wgpu::Buffer,
pub index_buffer: wgpu::Buffer,
pub num_elements: u32,
pub material: usize,
}
pub struct Model {
pub meshes: Vec<Mesh>,
pub materials: Vec<Material>,
}
impl Model {
pub fn load<P: AsRef<Path>>(
device: &wgpu::Device,
layout: &wgpu::BindGroupLayout,
path: P,
) -> Result<(Self, Vec<wgpu::CommandBuffer>), failure::Error> {
let (obj_models, obj_materials) = tobj::load_obj(path.as_ref())?;
// We're assuming that the texture files are stored with the obj file
let containing_folder = path.as_ref().parent().unwrap();
// Our `Texure` struct currently returns a `CommandBuffer` when it's created so we need to collect those and return them.
let mut command_buffers = Vec::new();
let mut materials = Vec::new();
for mat in obj_materials {
let diffuse_path = mat.diffuse_texture;
let (diffuse_texture, cmds) = texture::Texture::load(device, containing_folder.join(diffuse_path), false)?;
command_buffers.push(cmds);
let normal_path = match mat.unknown_param.get("map_Bump") {
Some(v) => Ok(v),
None => Err(failure::err_msg("Unable to find normal map"))
};
let (normal_texture, cmds) = texture::Texture::load(device, containing_folder.join(normal_path?), true)?;
command_buffers.push(cmds);
materials.push(Material::new(
device,
&mat.name,
diffuse_texture,
normal_texture,
layout,
));
}
let mut meshes = Vec::new();
for m in obj_models {
let mut vertices = Vec::new();
for i in 0..m.mesh.positions.len() / 3 {
vertices.push(ModelVertex {
position: [
m.mesh.positions[i * 3],
m.mesh.positions[i * 3 + 1],
m.mesh.positions[i * 3 + 2],
].into(),
tex_coords: [
m.mesh.texcoords[i * 2],
m.mesh.texcoords[i * 2 + 1]
].into(),
normal: [
m.mesh.normals[i * 3],
m.mesh.normals[i * 3 + 1],
m.mesh.normals[i * 3 + 2],
].into(),
// We'll calculate these later
tangent: [0.0; 3].into(),
bitangent: [0.0; 3].into(),
});
}
let indices = &m.mesh.indices;
// Calculate tangents and bitangets. We're going to
// use the triangles, so we need to loop through the
// indices in chunks of 3
for c in indices.chunks(3) {
let v0 = vertices[c[0] as usize];
let v1 = vertices[c[1] as usize];
let v2 = vertices[c[2] as usize];
let pos0 = v0.position;
let pos1 = v1.position;
let pos2 = v2.position;
let uv0 = v0.tex_coords;
let uv1 = v1.tex_coords;
let uv2 = v2.tex_coords;
// Calculate the edges of the triangle
let delta_pos1 = pos1 - pos0;
let delta_pos2 = pos2 - pos0;
// This will give us a direction to calculate the
// tangent and bitangent
let delta_uv1 = uv1 - uv0;
let delta_uv2 = uv2 - uv0;
// Solving the following system of equations will
// give us the tangent and bitangent.
// delta_pos1 = delta_uv1.x * T + delta_u.y * B
// delta_pos2 = delta_uv2.x * T + delta_uv2.y * B
// Luckily, the place I found this equation provided
// the solution!
let r = 1.0 / (delta_uv1 .x * delta_uv2.y - delta_uv1.y * delta_uv2.x);
let tangent = (delta_pos1 * delta_uv2.y - delta_pos2 * delta_uv1.y) * r;
let bitangent = (delta_pos2 * delta_uv1.x - delta_pos1 * delta_uv2.x) * r;
// We'll use the same tangent/bitangent for each vertex in the triangle
vertices[c[0] as usize].tangent = tangent;
vertices[c[1] as usize].tangent = tangent;
vertices[c[2] as usize].tangent = tangent;
vertices[c[0] as usize].bitangent = bitangent;
vertices[c[1] as usize].bitangent = bitangent;
vertices[c[2] as usize].bitangent = bitangent;
}
let vertex_buffer = device.create_buffer_with_data(
bytemuck::cast_slice(&vertices),
wgpu::BufferUsage::VERTEX,
);
let index_buffer = device.create_buffer_with_data(
bytemuck::cast_slice(indices),
wgpu::BufferUsage::INDEX,
);
meshes.push(Mesh {
name: m.name,
vertex_buffer,
index_buffer,
num_elements: m.mesh.indices.len() as u32,
material: m.mesh.material_id.unwrap_or(0),
});
}
Ok((Self { meshes, materials }, command_buffers))
}
}
pub trait DrawModel<'a, 'b>
where
'b: 'a,
{
fn draw_mesh(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_mesh_instanced(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_model(
&mut self,
model: &'b Model,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_model_instanced_with_material(
&mut self,
model: &'b Model,
material: &'b Material,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
}
impl<'a, 'b> DrawModel<'a, 'b> for wgpu::RenderPass<'a>
where
'b: 'a,
{
fn draw_mesh(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.draw_mesh_instanced(mesh, material, 0..1, uniforms, light);
}
fn draw_mesh_instanced(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.set_vertex_buffer(0, &mesh.vertex_buffer, 0, 0);
self.set_index_buffer(&mesh.index_buffer, 0, 0);
self.set_bind_group(0, &material.bind_group, &[]);
self.set_bind_group(1, &uniforms, &[]);
self.set_bind_group(2, &light, &[]);
self.draw_indexed(0..mesh.num_elements, 0, instances);
}
fn draw_model(
&mut self,
model: &'b Model,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.draw_model_instanced(model, 0..1, uniforms, light);
}
fn draw_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
for mesh in &model.meshes {
let material = &model.materials[mesh.material];
self.draw_mesh_instanced(mesh, material, instances.clone(), uniforms, light);
}
}
fn draw_model_instanced_with_material(
&mut self,
model: &'b Model,
material: &'b Material,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
for mesh in &model.meshes {
self.draw_mesh_instanced(mesh, material, instances.clone(), uniforms, light);
}
}
}
pub trait DrawLight<'a, 'b>
where
'b: 'a,
{
fn draw_light_mesh(
&mut self,
mesh: &'b Mesh,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_light_mesh_instanced(
&mut self,
mesh: &'b Mesh,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) where
'b: 'a;
fn draw_light_model(
&mut self,
model: &'b Model,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_light_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
}
impl<'a, 'b> DrawLight<'a, 'b> for wgpu::RenderPass<'a>
where
'b: 'a,
{
fn draw_light_mesh(
&mut self,
mesh: &'b Mesh,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.draw_light_mesh_instanced(mesh, 0..1, uniforms, light);
}
fn draw_light_mesh_instanced(
&mut self,
mesh: &'b Mesh,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.set_vertex_buffer(0, &mesh.vertex_buffer, 0, 0);
self.set_index_buffer(&mesh.index_buffer, 0, 0);
self.set_bind_group(0, uniforms, &[]);
self.set_bind_group(1, light, &[]);
self.draw_indexed(0..mesh.num_elements, 0, instances);
}
fn draw_light_model(
&mut self,
model: &'b Model,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.draw_light_model_instanced(model, 0..1, uniforms, light);
}
fn draw_light_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
for mesh in &model.meshes {
self.draw_light_mesh_instanced(mesh, instances.clone(), uniforms, light);
}
}
}

@ -0,0 +1,244 @@
use failure::bail;
pub struct RenderPipelineBuilder<'a> {
layout: Option<&'a wgpu::PipelineLayout>,
vertex_shader: Option<&'a [u8]>,
fragment_shader: Option<&'a [u8]>,
front_face: wgpu::FrontFace,
cull_mode: wgpu::CullMode,
depth_bias: i32,
depth_bias_slope_scale: f32,
depth_bias_clamp: f32,
primitive_topology: wgpu::PrimitiveTopology,
color_states: Vec<wgpu::ColorStateDescriptor>,
depth_stencil_state: Option<wgpu::DepthStencilStateDescriptor>,
index_format: wgpu::IndexFormat,
vertex_buffers: Vec<wgpu::VertexBufferDescriptor<'a>>,
sample_count: u32,
sample_mask: u32,
alpha_to_coverage_enabled: bool,
}
impl<'a> RenderPipelineBuilder<'a> {
pub fn new() -> Self {
Self {
layout: None,
vertex_shader: None,
fragment_shader: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: wgpu::CullMode::None,
depth_bias: 0,
depth_bias_slope_scale: 0.0,
depth_bias_clamp: 0.0,
primitive_topology: wgpu::PrimitiveTopology::TriangleList,
color_states: Vec::new(),
depth_stencil_state: None,
index_format: wgpu::IndexFormat::Uint32,
vertex_buffers: Vec::new(),
sample_count: 1,
sample_mask: !0,
alpha_to_coverage_enabled: false,
}
}
pub fn layout(&mut self, layout: &'a wgpu::PipelineLayout) -> &mut Self {
self.layout = Some(layout);
self
}
pub fn vertex_shader(&mut self, spv: &'a [u8]) -> &mut Self {
self.vertex_shader = Some(spv);
self
}
pub fn fragment_shader(&mut self, spv: &'a [u8]) -> &mut Self {
self.fragment_shader = Some(spv);
self
}
#[allow(dead_code)]
pub fn front_face(&mut self, ff: wgpu::FrontFace) -> &mut Self {
self.front_face = ff;
self
}
#[allow(dead_code)]
pub fn cull_mode(&mut self, cm: wgpu::CullMode) -> &mut Self {
self.cull_mode = cm;
self
}
#[allow(dead_code)]
pub fn depth_bias(&mut self, db: i32) -> &mut Self {
self.depth_bias = db;
self
}
#[allow(dead_code)]
pub fn depth_bias_slope_scale(&mut self, dbss: f32) -> &mut Self {
self.depth_bias_slope_scale = dbss;
self
}
#[allow(dead_code)]
pub fn depth_bias_clamp(&mut self, dbc: f32) -> &mut Self {
self.depth_bias_clamp = dbc;
self
}
#[allow(dead_code)]
pub fn primitive_topology(&mut self, pt: wgpu::PrimitiveTopology) -> &mut Self {
self.primitive_topology = pt;
self
}
pub fn color_state(&mut self, cs: wgpu::ColorStateDescriptor) -> &mut Self {
self.color_states.push(cs);
self
}
/// Helper method for [RenderPipelineBuilder::color_state]
pub fn color_solid(&mut self, format: wgpu::TextureFormat) -> &mut Self {
self.color_state(
wgpu::ColorStateDescriptor {
format,
alpha_blend: wgpu::BlendDescriptor::REPLACE,
color_blend: wgpu::BlendDescriptor::REPLACE,
write_mask: wgpu::ColorWrite::ALL,
}
)
}
pub fn depth_stencil_state(&mut self, dss: wgpu::DepthStencilStateDescriptor) -> &mut Self {
self.depth_stencil_state = Some(dss);
self
}
/// Helper method for [RenderPipelineBuilder::depth_stencil_state]
pub fn depth_no_stencil(
&mut self,
format: wgpu::TextureFormat,
depth_write_enabled: bool,
depth_compare: wgpu::CompareFunction,
) -> &mut Self {
self.depth_stencil_state(
wgpu::DepthStencilStateDescriptor {
format,
depth_write_enabled,
depth_compare,
stencil_front: wgpu::StencilStateFaceDescriptor::IGNORE,
stencil_back: wgpu::StencilStateFaceDescriptor::IGNORE,
stencil_read_mask: 0,
stencil_write_mask: 0,
}
)
}
/// Helper method for [RenderPipelineBuilder::depth_no_stencil]
pub fn depth_format(&mut self, format: wgpu::TextureFormat) -> &mut Self {
self.depth_no_stencil(format, true, wgpu::CompareFunction::Less)
}
#[allow(dead_code)]
pub fn index_format(&mut self, ifmt: wgpu::IndexFormat) -> &mut Self {
self.index_format = ifmt;
self
}
pub fn vertex_buffer(&mut self, vb: wgpu::VertexBufferDescriptor<'a>) -> &mut Self {
self.vertex_buffers.push(vb);
self
}
#[allow(dead_code)]
pub fn sample_count(&mut self, sc: u32) -> &mut Self {
self.sample_count = sc;
self
}
#[allow(dead_code)]
pub fn sample_mask(&mut self, sm: u32) -> &mut Self {
self.sample_mask = sm;
self
}
#[allow(dead_code)]
pub fn alpha_to_coverage_enabled(&mut self, atce: bool) -> &mut Self {
self.alpha_to_coverage_enabled = atce;
self
}
pub fn build(&self, device: &wgpu::Device) -> Result<wgpu::RenderPipeline, failure::Error> {
// We need a layout
if self.layout.is_none() {
bail!("No pipeline layout supplied!");
}
let layout = self.layout.unwrap();
// Render pipelines always have a vertex shader, but due
// to the way the builder pattern works, we can't
// guarantee that the user will specify one, so we'll
// just return an error if they forgot.
//
// We could supply a default one, but a "default" vertex
// could take on many forms. An error is much more
// explicit.
if self.vertex_shader.is_none() {
bail!("No vertex shader supplied!")
}
let vs = create_shader_module(device, self.vertex_shader.unwrap());
// The fragment shader is optional (IDK why, but it is).
// Having the shader be optional is giving me issues with
// the borrow checker so I'm going to use a default shader
// if the user doesn't supply one.
let fs_spv = self.fragment_shader.unwrap_or(include_bytes!("default.frag.spv"));
let fs = create_shader_module(device, fs_spv);
let pipeline = device.create_render_pipeline(
&wgpu::RenderPipelineDescriptor {
layout: &layout,
vertex_stage: wgpu::ProgrammableStageDescriptor {
module: &vs,
entry_point: "main",
},
fragment_stage: Some(
wgpu::ProgrammableStageDescriptor {
module: &fs,
entry_point: "main",
}
),
rasterization_state: Some(wgpu::RasterizationStateDescriptor {
front_face: self.front_face,
cull_mode: self.cull_mode,
depth_bias: self.depth_bias,
depth_bias_slope_scale: self.depth_bias_slope_scale,
depth_bias_clamp: self.depth_bias_clamp,
}),
primitive_topology: self.primitive_topology,
color_states: &self.color_states,
depth_stencil_state: self.depth_stencil_state.clone(),
vertex_state: wgpu::VertexStateDescriptor {
index_format: self.index_format,
vertex_buffers: &self.vertex_buffers,
},
sample_count: self.sample_count,
sample_mask: self.sample_mask,
alpha_to_coverage_enabled: self.alpha_to_coverage_enabled,
}
);
Ok(pipeline)
}
}
fn create_shader_module(device: &wgpu::Device, spirv: &[u8]) -> wgpu::ShaderModule {
device.create_shader_module(
&wgpu::read_spirv(
std::io::Cursor::new(
spirv
)
).unwrap()
)
}

@ -0,0 +1,40 @@
#version 450
layout(location=0) in vec2 v_tex_coords;
layout(location=1) in vec3 v_position; // UPDATED!
layout(location=2) in vec3 v_light_position; // NEW!
layout(location=3) in vec3 v_view_position; // NEW!
layout(location=0) out vec4 f_color;
layout(set = 0, binding = 0) uniform texture2D t_diffuse;
layout(set = 0, binding = 1) uniform sampler s_diffuse;
layout(set = 0, binding = 2) uniform texture2D t_normal;
layout(set = 0, binding = 3) uniform sampler s_normal;
layout(set = 2, binding = 0) uniform Light {
vec3 light_position;
vec3 light_color;
};
void main() {
vec4 object_color = texture(sampler2D(t_diffuse, s_diffuse), v_tex_coords);
vec4 object_normal = texture(sampler2D(t_normal, s_normal), v_tex_coords);
float ambient_strength = 0.1;
vec3 ambient_color = light_color * ambient_strength;
vec3 normal = normalize(object_normal.rgb * 2.0 - 1.0); // UPDATED!
vec3 light_dir = normalize(v_light_position - v_position); // UPDATED!
float diffuse_strength = max(dot(normal, light_dir), 0.0);
vec3 diffuse_color = light_color * diffuse_strength;
vec3 view_dir = normalize(v_view_position - v_position); // UPDATED!
vec3 half_dir = normalize(view_dir + light_dir);
float specular_strength = pow(max(dot(normal, half_dir), 0.0), 32);
vec3 specular_color = specular_strength * light_color;
vec3 result = (ambient_color + diffuse_color + specular_color) * object_color.xyz;
f_color = vec4(result, object_color.a);
}

@ -0,0 +1,57 @@
#version 450
layout(location=0) in vec3 a_position;
layout(location=1) in vec2 a_tex_coords;
layout(location=2) in vec3 a_normal;
layout(location=3) in vec3 a_tangent;
layout(location=4) in vec3 a_bitangent;
layout(location=0) out vec2 v_tex_coords;
layout(location=1) out vec3 v_position; // UPDATED!
layout(location=2) out vec3 v_light_position; // NEW!
layout(location=3) out vec3 v_view_position; // NEW!
layout(set=1, binding=0)
uniform Uniforms {
vec3 u_view_position;
mat4 u_view_proj;
};
layout(set=1, binding=1)
buffer Instances {
mat4 s_models[];
};
// NEW!
layout(set=2, binding=0) uniform Light {
vec3 light_position;
vec3 light_color;
};
void main() {
v_tex_coords = a_tex_coords;
mat4 model_matrix = s_models[gl_InstanceIndex];
mat3 normal_matrix = mat3(transpose(inverse(model_matrix)));
vec3 normal = normalize(normal_matrix * a_normal);
vec3 tangent = normalize(normal_matrix * a_tangent);
vec3 bitangent = normalize(normal_matrix * a_bitangent);
// UDPATED!
mat3 tangent_matrix = transpose(mat3(
tangent,
bitangent,
normal
));
vec4 model_space = model_matrix * vec4(a_position, 1.0);
v_position = model_space.xyz;
// NEW!
v_position = tangent_matrix * model_space.xyz;
v_light_position = tangent_matrix * light_position;
v_view_position = tangent_matrix * u_view_position;
gl_Position = u_view_proj * model_space;
}

@ -0,0 +1,287 @@
use image::GenericImageView;
use std::path::Path;
use crate::pipeline;
pub struct Texture {
pub texture: wgpu::Texture,
pub view: wgpu::TextureView,
pub sampler: wgpu::Sampler,
}
impl Texture {
pub const DEPTH_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth32Float;
pub fn load<P: AsRef<Path>>(
device: &wgpu::Device,
path: P,
is_normal_map: bool,
) -> Result<(Self, wgpu::CommandBuffer), failure::Error> {
// Needed to appease the borrow checker
let path_copy = path.as_ref().to_path_buf();
let label = path_copy.to_str();
let img = image::open(path)?;
Self::from_image(device, &img, label, is_normal_map)
}
pub fn create_depth_texture(device: &wgpu::Device, sc_desc: &wgpu::SwapChainDescriptor, label: &str) -> Self {
let size = wgpu::Extent3d {
width: sc_desc.width,
height: sc_desc.height,
depth: 1,
};
let desc = wgpu::TextureDescriptor {
label: Some(label),
size,
array_layer_count: 1,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: Self::DEPTH_FORMAT,
usage: wgpu::TextureUsage::OUTPUT_ATTACHMENT
| wgpu::TextureUsage::SAMPLED
| wgpu::TextureUsage::COPY_SRC,
};
let texture = device.create_texture(&desc);
let view = texture.create_default_view();
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Nearest,
lod_min_clamp: -100.0,
lod_max_clamp: 100.0,
compare: wgpu::CompareFunction::LessEqual,
});
Self { texture, view, sampler }
}
#[allow(dead_code)]
pub fn from_bytes(
device: &wgpu::Device,
bytes: &[u8],
label: &str,
is_normal_map: bool,
) -> Result<(Self, wgpu::CommandBuffer), failure::Error> {
let img = image::load_from_memory(bytes)?;
Self::from_image(device, &img, Some(label), is_normal_map)
}
pub fn from_image(
device: &wgpu::Device,
img: &image::DynamicImage,
label: Option<&str>,
is_normal_map: bool,
) -> Result<(Self, wgpu::CommandBuffer), failure::Error> {
let rgba = img.to_rgba();
let dimensions = img.dimensions();
let size = wgpu::Extent3d {
width: dimensions.0,
height: dimensions.1,
depth: 1,
};
// Ideally this number should be related to the size of
// the image, but let's keep things simple for now.
let mip_level_count = 4;
let texture_desc = wgpu::TextureDescriptor {
label,
size,
array_layer_count: 1,
mip_level_count, // UPDATED!
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: if is_normal_map {
wgpu::TextureFormat::Rgba8Unorm
} else {
wgpu::TextureFormat::Rgba8UnormSrgb
},
usage: wgpu::TextureUsage::SAMPLED
// Needed for to make the mip maps.
| wgpu::TextureUsage::OUTPUT_ATTACHMENT
| wgpu::TextureUsage::COPY_DST,
};
let texture = device.create_texture(&texture_desc);
let buffer = device.create_buffer_with_data(
&rgba,
wgpu::BufferUsage::COPY_SRC,
);
let mut encoder = device.create_command_encoder(
&wgpu::CommandEncoderDescriptor {
label: Some("texture_buffer_copy_encoder"),
}
);
encoder.copy_buffer_to_texture(
wgpu::BufferCopyView {
buffer: &buffer,
offset: 0,
bytes_per_row: 4 * dimensions.0,
rows_per_image: dimensions.1,
},
wgpu::TextureCopyView {
texture: &texture,
mip_level: 0,
array_layer: 0,
origin: wgpu::Origin3d::ZERO,
},
size,
);
// Make sure to do this after you've copied the buffer
// to the texture, other wise your mipmaps will be black.
Self::generate_mipmaps(
&mut encoder,
&device,
&texture,
&texture_desc,
mip_level_count
);
let cmd_buffer = encoder.finish();
let view = texture.create_default_view();
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Nearest,
mipmap_filter: wgpu::FilterMode::Nearest,
lod_min_clamp: -100.0,
lod_max_clamp: 100.0,
compare: wgpu::CompareFunction::Always,
});
Ok((Self { texture, view, sampler }, cmd_buffer))
}
pub fn generate_mipmaps(
encoder: &mut wgpu::CommandEncoder,
device: &wgpu::Device,
texture: &wgpu::Texture,
texture_desc: &wgpu::TextureDescriptor,
mip_count: u32,
) {
let bind_group_layout = device.create_bind_group_layout(
&wgpu::BindGroupLayoutDescriptor {
bindings: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::SampledTexture {
multisampled: false,
component_type: wgpu::TextureComponentType::Float,
dimension: wgpu::TextureViewDimension::D2,
}
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Sampler {
comparison: false,
}
}
],
label: None,
}
);
let pipeline_layout = device.create_pipeline_layout(
&wgpu::PipelineLayoutDescriptor {
bind_group_layouts: &[&bind_group_layout],
},
);
// This pipeline will render out a texture to another texture.
// We create the mipmaps by rendering to increasingly smaller
// textures.
let blit_pipeline = pipeline::RenderPipelineBuilder::new()
.layout(&pipeline_layout)
.color_solid(texture_desc.format)
.vertex_shader(include_bytes!("blit.vert.spv"))
.fragment_shader(include_bytes!("blit.frag.spv"))
// Using wgpu::TriangleStrip makes our lives easier in the shader.
.primitive_topology(wgpu::PrimitiveTopology::TriangleStrip)
.build(device).unwrap();
// This sampler ensures that the smaller textures get the right
// color data.
let sampler = device.create_sampler(
&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Nearest,
mipmap_filter: wgpu::FilterMode::Nearest,
// Since we are using this sampler to generate mipmaps,
// we don't need it the use level of detail values.
lod_min_clamp: 0.0,
lod_max_clamp: 0.0,
compare: wgpu::CompareFunction::Always,
}
);
// Create a view for every mip level.
let views = (0..mip_count).map(|mip| {
texture.create_view(
&wgpu::TextureViewDescriptor {
format: texture_desc.format,
dimension: wgpu::TextureViewDimension::D2,
aspect: wgpu::TextureAspect::All,
base_mip_level: mip,
level_count: 1,
base_array_layer: 0,
array_layer_count: 1,
}
)
}).collect::<Vec<_>>();
// Skip the first view, as that is the base one
for target_mip in 1..mip_count as usize {
let bind_group = device.create_bind_group(
&wgpu::BindGroupDescriptor {
layout: &bind_group_layout,
bindings: &[
wgpu::Binding {
binding: 0,
// Bind to the view before this one
resource: wgpu::BindingResource::TextureView(&views[target_mip - 1]),
},
wgpu::Binding {
binding: 1,
resource: wgpu::BindingResource::Sampler(&sampler),
}
],
label: None,
},
);
let mut pass = encoder.begin_render_pass(
&wgpu::RenderPassDescriptor {
color_attachments: &[
wgpu::RenderPassColorAttachmentDescriptor {
attachment: &views[target_mip],
resolve_target: None,
clear_color: wgpu::Color::WHITE,
load_op: wgpu::LoadOp::Clear,
store_op: wgpu::StoreOp::Store,
}
],
depth_stencil_attachment: None,
},
);
pass.set_pipeline(&blit_pipeline);
pass.set_bind_group(0, &bind_group, &[]);
pass.draw(0..4, 0..1);
}
}
}

@ -1 +1 @@
Subproject commit be55cbc2e970ebf2e90d44448682a312aa8e8809
Subproject commit 31aebd26ce4ea8f8a8b162b03f93ec1eef77a20a
Loading…
Cancel
Save