use std::io::{BufReader, Cursor}; use cfg_if::cfg_if; use wgpu::util::DeviceExt; use crate::{model, texture}; #[cfg(target_arch = "wasm32")] fn format_url(file_name: &str) -> reqwest::Url { let window = web_sys::window().unwrap(); let location = window.location(); let mut origin = location.origin().unwrap(); if !origin.ends_with("learn-wgpu") { origin = format!("{}/learn-wgpu", origin); } let base = reqwest::Url::parse(&format!("{}/", origin,)).unwrap(); base.join(file_name).unwrap() } pub async fn load_string(file_name: &str) -> anyhow::Result { cfg_if! { if #[cfg(target_arch = "wasm32")] { let url = format_url(file_name); let txt = reqwest::get(url) .await? .text() .await?; } else { let path = std::path::Path::new(env!("OUT_DIR")) .join("res") .join(file_name); let txt = std::fs::read_to_string(path)?; } } Ok(txt) } pub async fn load_binary(file_name: &str) -> anyhow::Result> { cfg_if! { if #[cfg(target_arch = "wasm32")] { let url = format_url(file_name); let data = reqwest::get(url) .await? .bytes() .await? .to_vec(); } else { let path = std::path::Path::new(env!("OUT_DIR")) .join("res") .join(file_name); let data = std::fs::read(path)?; } } Ok(data) } pub async fn load_texture( file_name: &str, is_normal_map: bool, device: &wgpu::Device, queue: &wgpu::Queue, ) -> anyhow::Result { let data = load_binary(file_name).await?; texture::Texture::from_bytes(device, queue, &data, file_name, is_normal_map) } pub async fn load_model( file_name: &str, device: &wgpu::Device, queue: &wgpu::Queue, layout: &wgpu::BindGroupLayout, ) -> anyhow::Result { let obj_text = load_string(file_name).await?; let obj_cursor = Cursor::new(obj_text); let mut obj_reader = BufReader::new(obj_cursor); let (models, obj_materials) = tobj::load_obj_buf_async( &mut obj_reader, &tobj::LoadOptions { triangulate: true, single_index: true, ..Default::default() }, |p| async move { let mat_text = load_string(&p).await.unwrap(); tobj::load_mtl_buf(&mut BufReader::new(Cursor::new(mat_text))) }, ) .await?; let mut materials = Vec::new(); for m in obj_materials? { let diffuse_texture = load_texture(&m.diffuse_texture, false, device, queue).await?; let normal_texture = load_texture(&m.normal_texture, true, device, queue).await?; materials.push(model::Material::new( device, &m.name, diffuse_texture, normal_texture, layout, )); } let meshes = models .into_iter() .map(|m| { let mut vertices = (0..m.mesh.positions.len() / 3) .map(|i| model::ModelVertex { position: [ m.mesh.positions[i * 3], m.mesh.positions[i * 3 + 1], m.mesh.positions[i * 3 + 2], ], tex_coords: [m.mesh.texcoords[i * 2], m.mesh.texcoords[i * 2 + 1]], normal: [ m.mesh.normals[i * 3], m.mesh.normals[i * 3 + 1], m.mesh.normals[i * 3 + 2], ], // We'll calculate these later tangent: [0.0; 3], bitangent: [0.0; 3], }) .collect::>(); let indices = &m.mesh.indices; let mut triangles_included = vec![0; vertices.len()]; // Calculate tangents and bitangets. We're going to // use the triangles, so we need to loop through the // indices in chunks of 3 for c in indices.chunks(3) { let v0 = vertices[c[0] as usize]; let v1 = vertices[c[1] as usize]; let v2 = vertices[c[2] as usize]; let pos0: cgmath::Vector3<_> = v0.position.into(); let pos1: cgmath::Vector3<_> = v1.position.into(); let pos2: cgmath::Vector3<_> = v2.position.into(); let uv0: cgmath::Vector2<_> = v0.tex_coords.into(); let uv1: cgmath::Vector2<_> = v1.tex_coords.into(); let uv2: cgmath::Vector2<_> = v2.tex_coords.into(); // Calculate the edges of the triangle let delta_pos1 = pos1 - pos0; let delta_pos2 = pos2 - pos0; // This will give us a direction to calculate the // tangent and bitangent let delta_uv1 = uv1 - uv0; let delta_uv2 = uv2 - uv0; // Solving the following system of equations will // give us the tangent and bitangent. // delta_pos1 = delta_uv1.x * T + delta_u.y * B // delta_pos2 = delta_uv2.x * T + delta_uv2.y * B // Luckily, the place I found this equation provided // the solution! let r = 1.0 / (delta_uv1.x * delta_uv2.y - delta_uv1.y * delta_uv2.x); let tangent = (delta_pos1 * delta_uv2.y - delta_pos2 * delta_uv1.y) * r; // We flip the bitangent to enable right-handed normal // maps with wgpu texture coordinate system let bitangent = (delta_pos2 * delta_uv1.x - delta_pos1 * delta_uv2.x) * -r; // We'll use the same tangent/bitangent for each vertex in the triangle vertices[c[0] as usize].tangent = (tangent + cgmath::Vector3::from(vertices[c[0] as usize].tangent)).into(); vertices[c[1] as usize].tangent = (tangent + cgmath::Vector3::from(vertices[c[1] as usize].tangent)).into(); vertices[c[2] as usize].tangent = (tangent + cgmath::Vector3::from(vertices[c[2] as usize].tangent)).into(); vertices[c[0] as usize].bitangent = (bitangent + cgmath::Vector3::from(vertices[c[0] as usize].bitangent)).into(); vertices[c[1] as usize].bitangent = (bitangent + cgmath::Vector3::from(vertices[c[1] as usize].bitangent)).into(); vertices[c[2] as usize].bitangent = (bitangent + cgmath::Vector3::from(vertices[c[2] as usize].bitangent)).into(); // Used to average the tangents/bitangents triangles_included[c[0] as usize] += 1; triangles_included[c[1] as usize] += 1; triangles_included[c[2] as usize] += 1; } // Average the tangents/bitangents for (i, n) in triangles_included.into_iter().enumerate() { let denom = 1.0 / n as f32; let mut v = &mut vertices[i]; v.tangent = (cgmath::Vector3::from(v.tangent) * denom).into(); v.bitangent = (cgmath::Vector3::from(v.bitangent) * denom).into(); } let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some(&format!("{:?} Vertex Buffer", file_name)), contents: bytemuck::cast_slice(&vertices), usage: wgpu::BufferUsages::VERTEX, }); let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some(&format!("{:?} Index Buffer", file_name)), contents: bytemuck::cast_slice(&m.mesh.indices), usage: wgpu::BufferUsages::INDEX, }); model::Mesh { name: file_name.to_string(), vertex_buffer, index_buffer, num_elements: m.mesh.indices.len() as u32, material: m.mesh.material_id.unwrap_or(0), } }) .collect::>(); Ok(model::Model { meshes, materials }) }