pull/40/head
Ryan Tharp 6 years ago
commit 6f261c321c

@ -0,0 +1,167 @@
#ifndef LLARP_NET_ADDR_HPP
#define LLARP_NET_ADDR_HPP
#include <string>
#include <llarp/net.h>
#include <llarp/address_info.hpp>
#include <llarp/net.hpp>
namespace llarp
{
// fwd declr
struct huint32_t;
struct nuint32_t;
// real work
struct Addr
{
// network order
sockaddr_in6 _addr;
sockaddr_in _addr4; // why do we even have this? favor cpu over memory
~Addr();
Addr();
Addr(const Addr& other);
void
port(uint16_t port);
in6_addr*
addr6();
in_addr*
addr4();
const in6_addr*
addr6() const;
const in_addr*
addr4() const;
Addr(const std::string str);
Addr(const std::string str, const uint16_t p_port);
bool
from_char_array(const char* str);
Addr(const char* str);
bool
from_4int(const uint8_t one, const uint8_t two, const uint8_t three,
const uint8_t four);
Addr(const uint8_t one, const uint8_t two, const uint8_t three,
const uint8_t four);
Addr(const uint8_t one, const uint8_t two, const uint8_t three,
const uint8_t four, const uint16_t p_port);
Addr(const AddressInfo& other);
Addr(const sockaddr_in& other);
Addr(const sockaddr_in6& other);
Addr(const sockaddr& other);
friend std::ostream&
operator<<(std::ostream& out, const Addr& a);
operator const sockaddr*() const;
operator sockaddr*() const;
void
CopyInto(sockaddr* other) const;
int
af() const;
uint16_t
port() const;
bool
operator<(const Addr& other) const;
bool
operator==(const Addr& other) const;
Addr&
operator=(const sockaddr& other);
inline uint32_t
tohl() const
{
return ntohl(addr4()->s_addr);
}
inline huint32_t
xtohl() const
{
return huint32_t{ntohl(addr4()->s_addr)};
}
inline uint32_t
ton() const
{
return addr4()->s_addr;
}
inline nuint32_t
xtonl() const
{
return nuint32_t{addr4()->s_addr};
}
bool
sameAddr(const Addr& other) const;
bool
operator!=(const Addr& other) const;
inline uint32_t
getHostLong()
{
in_addr_t addr = this->addr4()->s_addr;
uint32_t byte = ntohl(addr);
return byte;
};
bool
isTenPrivate(uint32_t byte);
bool
isOneSevenPrivate(uint32_t byte);
bool
isOneNinePrivate(uint32_t byte);
/// return true if our ipv4 address is a bogon
/// TODO: ipv6
bool
IsBogon() const;
socklen_t
SockLen() const;
bool
isPrivate() const;
bool
isLoopback() const;
struct Hash
{
std::size_t
operator()(Addr const& a) const noexcept
{
if(a.af() == AF_INET)
{
return a.port() ^ a.addr4()->s_addr;
}
static const uint8_t empty[16] = {0};
return (a.af() + memcmp(a.addr6(), empty, 16)) ^ a.port();
}
};
}; // end struct
} // namespace llarp
#endif

@ -0,0 +1,64 @@
#ifndef LLARP_NET_INADDR_HPP
#define LLARP_NET_INADDR_HPP
#include <llarp/net.hpp>
namespace llarp
{
/// IPv4 or IPv6 holder
struct inAddr
{
// unsigned char s6_addr[16];
struct in6_addr _addr; // store in network order
void
reset();
bool
from_char_array(const char* str);
void
fromSIIT();
void
toSIIT();
inline bool
isIPv6Mode() const;
bool
isIPv4Mode() const;
void
setIPv4Mode();
void
hexDebug();
//
// IPv4 specific functions
//
in_addr
toIAddr();
void
from4int(const uint8_t one, const uint8_t two, const uint8_t three,
const uint8_t four);
void
fromN32(nuint32_t in);
void
fromH32(huint32_t in);
nuint32_t
toN32();
huint32_t
toH32();
//
// IPv6 specific functions
//
};
} // namespace llarp
#endif

@ -0,0 +1,475 @@
#include <llarp/net_addr.hpp>
#include <llarp/net.hpp>
// for addrinfo
#ifndef _WIN32
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#else
#include <winsock2.h>
#include <ws2tcpip.h>
#include <wspiapi.h>
#define inet_aton(x, y) inet_pton(AF_INET, x, y)
#endif
llarp::Addr::operator const sockaddr*() const
{
if(af() == AF_INET)
return (const sockaddr*)&_addr4;
else
return (const sockaddr*)&_addr;
}
llarp::Addr::operator sockaddr*() const
{
if(af() == AF_INET)
return (sockaddr*)&_addr4;
else
return (sockaddr*)&_addr;
}
bool
llarp::Addr::operator<(const Addr& other) const
{
if(af() == AF_INET && other.af() == AF_INET)
return port() < other.port() || addr4()->s_addr < other.addr4()->s_addr;
else
return port() < other.port() || *addr6() < *other.addr6()
|| af() < other.af();
}
bool
llarp::Addr::operator==(const Addr& other) const
{
if(af() == AF_INET && other.af() == AF_INET)
return port() == other.port() && addr4()->s_addr == other.addr4()->s_addr;
else
return af() == other.af() && memcmp(addr6(), other.addr6(), 16) == 0
&& port() == other.port();
}
namespace llarp
{
Addr::Addr(){};
Addr::~Addr(){};
Addr::Addr(const Addr& other)
{
memcpy(&_addr, &other._addr, sizeof(sockaddr_in6));
memcpy(&_addr4, &other._addr4, sizeof(sockaddr_in));
}
void
Addr::port(uint16_t port)
{
if(af() == AF_INET)
{
_addr4.sin_port = htons(port);
}
_addr.sin6_port = htons(port);
}
in6_addr*
Addr::addr6()
{
return (in6_addr*)&_addr.sin6_addr.s6_addr[0];
}
in_addr*
Addr::addr4()
{
return (in_addr*)&_addr.sin6_addr.s6_addr[12];
}
const in6_addr*
Addr::addr6() const
{
return (const in6_addr*)&_addr.sin6_addr.s6_addr[0];
}
const in_addr*
Addr::addr4() const
{
return (const in_addr*)&_addr.sin6_addr.s6_addr[12];
}
Addr::Addr(const std::string str)
{
this->from_char_array(str.c_str());
}
Addr::Addr(const std::string str, const uint16_t p_port)
{
this->from_char_array(str.c_str());
this->port(p_port);
}
bool
Addr::from_char_array(const char* str)
{
llarp::Zero(&_addr, sizeof(sockaddr_in6));
struct addrinfo hint, *res = NULL;
int ret;
memset(&hint, '\0', sizeof hint);
hint.ai_family = PF_UNSPEC;
hint.ai_flags = AI_NUMERICHOST;
ret = getaddrinfo(str, NULL, &hint, &res);
if(ret)
{
llarp::LogError("failed to determine address family: ", str);
return false;
}
if(res->ai_family == AF_INET6)
{
llarp::LogError("IPv6 address not supported yet", str);
return false;
}
else if(res->ai_family != AF_INET)
{
llarp::LogError("Address family not supported yet", str);
return false;
}
// put it in _addr4
struct in_addr* addr = &_addr4.sin_addr;
if(inet_aton(str, addr) == 0)
{
llarp::LogError("failed to parse ", str);
return false;
}
_addr.sin6_family = res->ai_family;
_addr4.sin_family = res->ai_family;
_addr4.sin_port = 0; // save a call, 0 is 0 no matter how u arrange it
#if((__APPLE__ && __MACH__) || __FreeBSD__)
_addr4.sin_len = sizeof(in_addr);
#endif
// set up SIIT
uint8_t* addrptr = _addr.sin6_addr.s6_addr;
addrptr[11] = 0xff;
addrptr[10] = 0xff;
memcpy(12 + addrptr, &addr->s_addr, sizeof(in_addr));
freeaddrinfo(res);
return true;
}
Addr::Addr(const char* str)
{
this->from_char_array(str);
}
bool
Addr::from_4int(const uint8_t one, const uint8_t two, const uint8_t three,
const uint8_t four)
{
llarp::Zero(&_addr, sizeof(sockaddr_in6));
struct in_addr* addr = &_addr4.sin_addr;
unsigned char* ip = (unsigned char*)&(addr->s_addr);
_addr.sin6_family = AF_INET; // set ipv4 mode
_addr4.sin_family = AF_INET;
_addr4.sin_port = 0;
#if((__APPLE__ && __MACH__) || __FreeBSD__)
_addr4.sin_len = sizeof(in_addr);
#endif
// FIXME: watch endian
ip[0] = one;
ip[1] = two;
ip[2] = three;
ip[3] = four;
// set up SIIT
uint8_t* addrptr = _addr.sin6_addr.s6_addr;
addrptr[11] = 0xff;
addrptr[10] = 0xff;
memcpy(12 + addrptr, &addr->s_addr, sizeof(in_addr));
// copy ipv6 SIIT into _addr4
memcpy(&_addr4.sin_addr.s_addr, addr4(), sizeof(in_addr));
return true;
}
Addr::Addr(const uint8_t one, const uint8_t two, const uint8_t three,
const uint8_t four)
{
this->from_4int(one, two, three, four);
}
Addr::Addr(const uint8_t one, const uint8_t two, const uint8_t three,
const uint8_t four, const uint16_t p_port)
{
this->from_4int(one, two, three, four);
this->port(p_port);
}
Addr::Addr(const AddressInfo& other)
{
memcpy(addr6(), other.ip.s6_addr, 16);
_addr.sin6_port = htons(other.port);
if(ipv6_is_siit(other.ip))
{
_addr4.sin_family = AF_INET;
_addr4.sin_port = htons(other.port);
_addr.sin6_family = AF_INET;
memcpy(&_addr4.sin_addr.s_addr, addr4(), sizeof(in_addr));
}
else
_addr.sin6_family = AF_INET6;
}
Addr::Addr(const sockaddr_in& other)
{
llarp::Zero(&_addr, sizeof(sockaddr_in6));
_addr.sin6_family = AF_INET;
uint8_t* addrptr = _addr.sin6_addr.s6_addr;
uint16_t* port = &_addr.sin6_port;
// SIIT
memcpy(12 + addrptr, &((const sockaddr_in*)(&other))->sin_addr,
sizeof(in_addr));
addrptr[11] = 0xff;
addrptr[10] = 0xff;
*port = ((sockaddr_in*)(&other))->sin_port;
_addr4.sin_family = AF_INET;
_addr4.sin_port = *port;
memcpy(&_addr4.sin_addr.s_addr, addr4(), sizeof(in_addr));
}
Addr::Addr(const sockaddr_in6& other)
{
memcpy(addr6(), other.sin6_addr.s6_addr, 16);
_addr.sin6_port = htons(other.sin6_port);
auto ptr = &_addr.sin6_addr.s6_addr[0];
// TODO: detect SIIT better
if(ptr[11] == 0xff && ptr[10] == 0xff && ptr[9] == 0 && ptr[8] == 0
&& ptr[7] == 0 && ptr[6] == 0 && ptr[5] == 0 && ptr[4] == 0
&& ptr[3] == 0 && ptr[2] == 0 && ptr[1] == 0 && ptr[0] == 0)
{
_addr4.sin_family = AF_INET;
_addr4.sin_port = htons(other.sin6_port);
_addr.sin6_family = AF_INET;
memcpy(&_addr4.sin_addr.s_addr, addr4(), sizeof(in_addr));
}
else
_addr.sin6_family = AF_INET6;
}
Addr::Addr(const sockaddr& other)
{
llarp::Zero(&_addr, sizeof(sockaddr_in6));
_addr.sin6_family = other.sa_family;
uint8_t* addrptr = _addr.sin6_addr.s6_addr;
uint16_t* port = &_addr.sin6_port;
switch(other.sa_family)
{
case AF_INET:
// SIIT
memcpy(12 + addrptr, &((const sockaddr_in*)(&other))->sin_addr,
sizeof(in_addr));
addrptr[11] = 0xff;
addrptr[10] = 0xff;
*port = ((sockaddr_in*)(&other))->sin_port;
_addr4.sin_family = AF_INET;
_addr4.sin_port = *port;
memcpy(&_addr4.sin_addr.s_addr, addr4(), sizeof(in_addr));
break;
case AF_INET6:
memcpy(addrptr, &((const sockaddr_in6*)(&other))->sin6_addr.s6_addr,
16);
*port = ((sockaddr_in6*)(&other))->sin6_port;
break;
// TODO : sockaddr_ll
default:
break;
}
}
std::ostream&
operator<<(std::ostream& out, const Addr& a)
{
char tmp[128] = {0};
const void* ptr = nullptr;
if(a.af() == AF_INET6)
{
out << "[";
ptr = a.addr6();
}
else
{
ptr = a.addr4();
}
#ifndef _MSC_VER
if(inet_ntop(a.af(), ptr, tmp, sizeof(tmp)))
#else
if(inet_ntop(a.af(), (void*)ptr, tmp, sizeof(tmp)))
#endif
{
out << tmp;
if(a.af() == AF_INET6)
out << "]";
}
return out << ":" << a.port();
}
void
Addr::CopyInto(sockaddr* other) const
{
void *dst, *src;
in_port_t* ptr;
size_t slen;
switch(af())
{
case AF_INET:
{
sockaddr_in* ipv4_dst = (sockaddr_in*)other;
dst = (void*)&ipv4_dst->sin_addr.s_addr;
src = (void*)&_addr4.sin_addr.s_addr;
ptr = &((sockaddr_in*)other)->sin_port;
slen = sizeof(in_addr);
break;
}
case AF_INET6:
{
dst = (void*)((sockaddr_in6*)other)->sin6_addr.s6_addr;
src = (void*)_addr.sin6_addr.s6_addr;
ptr = &((sockaddr_in6*)other)->sin6_port;
slen = sizeof(in6_addr);
break;
}
default:
{
return;
}
}
memcpy(dst, src, slen);
*ptr = htons(port());
other->sa_family = af();
}
int
Addr::af() const
{
return _addr.sin6_family;
}
uint16_t
Addr::port() const
{
return ntohs(_addr.sin6_port);
}
Addr&
Addr::operator=(const sockaddr& other)
{
llarp::Zero(&_addr, sizeof(sockaddr_in6));
_addr.sin6_family = other.sa_family;
uint8_t* addrptr = _addr.sin6_addr.s6_addr;
uint16_t* port = &_addr.sin6_port;
switch(other.sa_family)
{
case AF_INET:
// SIIT
memcpy(12 + addrptr, &((const sockaddr_in*)(&other))->sin_addr,
sizeof(in_addr));
addrptr[11] = 0xff;
addrptr[10] = 0xff;
*port = ((sockaddr_in*)(&other))->sin_port;
_addr4.sin_family = AF_INET;
_addr4.sin_port = *port;
memcpy(&_addr4.sin_addr.s_addr, addr4(), sizeof(in_addr));
break;
case AF_INET6:
memcpy(addrptr, &((const sockaddr_in6*)(&other))->sin6_addr.s6_addr,
16);
*port = ((sockaddr_in6*)(&other))->sin6_port;
break;
// TODO : sockaddr_ll
default:
break;
}
return *this;
}
bool
Addr::sameAddr(const Addr& other) const
{
return memcmp(addr6(), other.addr6(), 16) == 0;
}
bool
Addr::operator!=(const Addr& other) const
{
return !(*this == other);
}
bool
Addr::isTenPrivate(uint32_t byte)
{
uint8_t byte1 = byte >> 24 & 0xff;
return byte1 == 10;
}
bool
Addr::isOneSevenPrivate(uint32_t byte)
{
uint8_t byte1 = byte >> 24 & 0xff;
uint8_t byte2 = (0x00ff0000 & byte) >> 16;
return byte1 == 172 && (byte2 >= 16 || byte2 <= 31);
}
bool
Addr::isOneNinePrivate(uint32_t byte)
{
uint8_t byte1 = byte >> 24 & 0xff;
uint8_t byte2 = (0x00ff0000 & byte) >> 16;
return byte1 == 192 && byte2 == 168;
}
/// return true if our ipv4 address is a bogon
/// TODO: ipv6
bool
Addr::IsBogon() const
{
return IsIPv4Bogon(xtohl());
}
socklen_t
Addr::SockLen() const
{
if(af() == AF_INET)
return sizeof(sockaddr_in);
else
return sizeof(sockaddr_in6);
}
bool
Addr::isPrivate() const
{
return IsBogon();
}
bool
Addr::isLoopback() const
{
return (ntohl(addr4()->s_addr)) >> 24 == 127;
}
struct Hash
{
std::size_t
operator()(Addr const& a) const noexcept
{
if(a.af() == AF_INET)
{
return a.port() ^ a.addr4()->s_addr;
}
static const uint8_t empty[16] = {0};
return (a.af() + memcmp(a.addr6(), empty, 16)) ^ a.port();
}
}; // end struct Hash
} // namespace llarp

@ -0,0 +1,230 @@
#include <llarp/net_inaddr.hpp>
std::ostream&
operator<<(std::ostream& out, const llarp::inAddr& a)
{
char tmp[128] = {0};
if(a.isIPv6Mode())
{
out << "[";
}
if(inet_ntop(a.isIPv4Mode() ? AF_INET : AF_INET6, (void*)&a._addr, tmp,
sizeof(tmp)))
{
out << tmp;
if(a.isIPv6Mode())
out << "]";
}
return out;
}
namespace llarp
{
void
inAddr::reset()
{
llarp::Zero(&this->_addr, sizeof(in6_addr));
}
bool
inAddr::from_char_array(const char* str)
{
this->reset();
// maybe refactor the family detection out
struct addrinfo hint, *res = NULL;
int ret;
memset(&hint, '\0', sizeof hint);
hint.ai_family = PF_UNSPEC;
hint.ai_flags = AI_NUMERICHOST;
ret = getaddrinfo(str, NULL, &hint, &res);
if(ret)
{
llarp::LogError("failed to determine address family: ", str);
return false;
}
if(res->ai_family != AF_INET && res->ai_family != AF_INET6)
{
llarp::LogError("Address family not supported yet", str);
return false;
}
// convert detected-family (ipv4 or ipv6) str to in6_addr
/*
if (res->ai_family == AF_INET)
{
freeaddrinfo(res);
// get IPv4
struct in_addr addr; // basically a uint32_t network order
if(inet_aton(str, &addr) == 0)
{
llarp::LogError("failed to parse ", str);
return false;
}
nuint32_t result;
result.n = addr.s_addr;
this->fromN32(result);
return true;
}
*/
ret = inet_pton(res->ai_family, str, &this->_addr);
// inet_pton won't set SIIT
// this->hexDebug();
freeaddrinfo(res);
if(ret <= 0)
{
if(ret == 0)
{
llarp::LogWarn("Not in presentation format");
return false;
}
else
{
llarp::LogWarn("inet_pton failure");
return false;
}
}
return true;
}
void
inAddr::fromSIIT()
{
if(ipv6_is_siit(this->_addr))
{
this->_addr.s6_addr[0] = this->_addr.s6_addr[12];
this->_addr.s6_addr[1] = this->_addr.s6_addr[13];
this->_addr.s6_addr[2] = this->_addr.s6_addr[14];
this->_addr.s6_addr[3] = this->_addr.s6_addr[15];
this->setIPv4Mode();
}
}
void
inAddr::toSIIT()
{
if(!ipv6_is_siit(this->_addr))
{
this->_addr.s6_addr[10] = 0xff;
this->_addr.s6_addr[11] = 0xff;
this->_addr.s6_addr[12] = this->_addr.s6_addr[0];
this->_addr.s6_addr[13] = this->_addr.s6_addr[1];
this->_addr.s6_addr[14] = this->_addr.s6_addr[2];
this->_addr.s6_addr[15] = this->_addr.s6_addr[3];
llarp::Zero(&this->_addr, sizeof(in6_addr) - 6);
}
}
inline bool
inAddr::isIPv6Mode() const
{
return !this->isIPv4Mode();
}
bool
inAddr::isIPv4Mode() const
{
return ipv6_is_siit(this->_addr)
|| (this->_addr.s6_addr[4] == 0 && this->_addr.s6_addr[5] == 0
&& this->_addr.s6_addr[6] == 0 && this->_addr.s6_addr[7] == 0
&& this->_addr.s6_addr[8] == 0 && this->_addr.s6_addr[9] == 0
&& this->_addr.s6_addr[10] == 0 && this->_addr.s6_addr[11] == 0
&& this->_addr.s6_addr[12] == 0 && this->_addr.s6_addr[13] == 0
&& this->_addr.s6_addr[14] == 0 && this->_addr.s6_addr[15] == 0);
}
void
inAddr::setIPv4Mode()
{
// keep first 4
// llarp::Zero(&this->_addr + 4, sizeof(in6_addr) - 4);
this->_addr.s6_addr[4] = 0;
this->_addr.s6_addr[5] = 0;
this->_addr.s6_addr[6] = 0;
this->_addr.s6_addr[7] = 0;
this->_addr.s6_addr[8] = 0;
this->_addr.s6_addr[9] = 0;
this->_addr.s6_addr[10] = 0;
this->_addr.s6_addr[11] = 0;
this->_addr.s6_addr[12] = 0;
this->_addr.s6_addr[13] = 0;
this->_addr.s6_addr[14] = 0;
this->_addr.s6_addr[15] = 0;
}
void
inAddr::hexDebug()
{
char hex_buffer[16 * 3 + 1];
hex_buffer[16 * 3] = 0;
for(unsigned int j = 0; j < 16; j++)
sprintf(&hex_buffer[3 * j], "%02X ", this->_addr.s6_addr[j]);
printf("in6_addr: [%s]\n", hex_buffer);
}
//
// IPv4 specific functions
//
in_addr
inAddr::toIAddr()
{
in_addr res;
res.s_addr = toN32().n;
return res;
}
void
inAddr::from4int(const uint8_t one, const uint8_t two, const uint8_t three,
const uint8_t four)
{
this->reset();
this->setIPv4Mode();
// Network byte order
this->_addr.s6_addr[0] = one;
this->_addr.s6_addr[1] = two;
this->_addr.s6_addr[2] = three;
this->_addr.s6_addr[3] = four;
}
void
inAddr::fromN32(nuint32_t in)
{
this->reset();
this->setIPv4Mode();
memcpy(&this->_addr, &in.n, sizeof(uint32_t));
}
void
inAddr::fromH32(huint32_t in)
{
this->fromN32(xhtonl(in));
}
nuint32_t
inAddr::toN32()
{
nuint32_t result;
result.n = 0; // return 0 for IPv6
if(this->isIPv4Mode())
{
memcpy(&result.n, &this->_addr, sizeof(uint32_t));
}
return result;
}
huint32_t
inAddr::toH32()
{
return xntohl(this->toN32());
}
//
// IPv6 specific functions
//
} // namespace llarp
Loading…
Cancel
Save