You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lokinet/llarp/util/buffer.hpp

289 lines
6.6 KiB
C++

#pragma once
#include <type_traits>
#include "common.hpp"
#include "mem.h"
#include "types.hpp"
#include <cassert>
#include <iterator>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <utility>
#include <algorithm>
#include <memory>
#include <vector>
/**
* buffer.h
*
* generic memory buffer
*
* TODO: replace usage of these with std::span (via a backport until we move to C++20). That's a
* fairly big job, though, as llarp_buffer_t is currently used a bit differently (i.e. maintains
* both start and current position, plus has some value reading/writing methods).
*/
/**
llarp_buffer_t represents a region of memory that is ONLY
valid in the current scope.
make sure to follow the rules:
ALWAYS copy the contents of the buffer if that data is to be used outside the
current scope.
ALWAYS pass a llarp_buffer_t * if you plan on modifying the data associated
with the buffer
ALWAYS pass a llarp_buffer_t * if you plan on advancing the stream position
ALWAYS pass a const llarp_buffer_t & if you are doing a read only operation
that does not modify the buffer
ALWAYS pass a const llarp_buffer_t & if you don't want to advance the stream
position
ALWAYS bail out of the current operation if you run out of space in a buffer
ALWAYS assume the pointers in the buffer are stack allocated memory
(yes even if you know they are not)
NEVER malloc() the pointers in the buffer when using it
NEVER realloc() the pointers in the buffer when using it
NEVER free() the pointers in the buffer when using it
NEVER use llarp_buffer_t ** (double pointers)
NEVER use llarp_buffer_t ** (double pointers)
ABSOLUTELY NEVER USE DOUBLE POINTERS.
*/
struct ManagedBuffer;
struct llarp_buffer_t
{
/// starting memory address
byte_t* base{nullptr};
/// memory address of stream position
byte_t* cur{nullptr};
/// max size of buffer
size_t sz{0};
byte_t
operator[](size_t x)
{
return *(this->base + x);
}
llarp_buffer_t() = default;
llarp_buffer_t(byte_t* b, byte_t* c, size_t s) : base(b), cur(c), sz(s)
{}
llarp_buffer_t(const ManagedBuffer&) = delete;
llarp_buffer_t(ManagedBuffer&&) = delete;
/// Construct referencing some 1-byte, trivially copyable (e.g. char, unsigned char, byte_t)
/// pointer type and a buffer size.
template <
typename T,
typename = std::enable_if_t<sizeof(T) == 1 and std::is_trivially_copyable_v<T>>>
llarp_buffer_t(T* buf, size_t _sz)
: base(reinterpret_cast<byte_t*>(const_cast<std::remove_const_t<T>*>(buf)))
, cur(base)
, sz(_sz)
{}
/// initialize llarp_buffer_t from containers supporting .data() and .size()
template <
typename T,
typename = std::void_t<decltype(std::declval<T>().data() + std::declval<T>().size())>>
llarp_buffer_t(T&& t) : llarp_buffer_t{t.data(), t.size()}
{}
byte_t*
begin()
{
return base;
}
byte_t*
begin() const
{
return base;
}
byte_t*
end()
{
return base + sz;
}
byte_t*
end() const
{
return base + sz;
}
size_t
size_left() const;
template <typename OutputIt>
bool
read_into(OutputIt begin, OutputIt end);
template <typename InputIt>
bool
write(InputIt begin, InputIt end);
#ifndef _WIN32
bool
writef(const char* fmt, ...) __attribute__((format(printf, 2, 3)));
#elif defined(__MINGW64__) || defined(__MINGW32__)
bool
writef(const char* fmt, ...) __attribute__((__format__(__MINGW_PRINTF_FORMAT, 2, 3)));
#else
bool
writef(const char* fmt, ...);
#endif
bool
put_uint16(uint16_t i);
bool
put_uint32(uint32_t i);
bool
put_uint64(uint64_t i);
bool
read_uint16(uint16_t& i);
bool
read_uint32(uint32_t& i);
bool
read_uint64(uint64_t& i);
size_t
read_until(char delim, byte_t* result, size_t resultlen);
/// make a copy of this buffer
std::vector<byte_t>
copy() const;
private:
friend struct ManagedBuffer;
llarp_buffer_t(const llarp_buffer_t&) = default;
llarp_buffer_t(llarp_buffer_t&&) = default;
};
bool
operator==(const llarp_buffer_t& buff, std::string_view data);
template <typename OutputIt>
bool
llarp_buffer_t::read_into(OutputIt begin, OutputIt end)
{
auto dist = std::distance(begin, end);
if (static_cast<decltype(dist)>(size_left()) >= dist)
{
std::copy_n(cur, dist, begin);
cur += dist;
return true;
}
return false;
}
template <typename InputIt>
bool
llarp_buffer_t::write(InputIt begin, InputIt end)
{
auto dist = std::distance(begin, end);
if (static_cast<decltype(dist)>(size_left()) >= dist)
{
cur = std::copy(begin, end, cur);
return true;
}
return false;
}
/**
Provide a copyable/moveable wrapper around `llarp_buffer_t`.
*/
struct ManagedBuffer
{
llarp_buffer_t underlying;
ManagedBuffer() = delete;
explicit ManagedBuffer(const llarp_buffer_t& b) : underlying(b)
{}
ManagedBuffer(ManagedBuffer&&) = default;
ManagedBuffer(const ManagedBuffer&) = default;
operator const llarp_buffer_t&() const
{
return underlying;
}
};
namespace llarp
{
// Wrapper around a std::unique_ptr<byte_t[]> that owns its own memory and is also implicitly
// convertible to a llarp_buffer_t.
struct OwnedBuffer
{
std::unique_ptr<byte_t[]> buf;
size_t sz;
template <typename T, typename = std::enable_if_t<sizeof(T) == 1>>
OwnedBuffer(std::unique_ptr<T[]> buf, size_t sz)
: buf{reinterpret_cast<byte_t*>(buf.release())}, sz{sz}
{}
// Create a new, uninitialized owned buffer of the given size.
explicit OwnedBuffer(size_t sz) : OwnedBuffer{std::make_unique<byte_t[]>(sz), sz}
{}
// copy content from existing memory
explicit OwnedBuffer(const byte_t* ptr, size_t sz) : OwnedBuffer{sz}
{
std::copy_n(ptr, sz, buf.get());
}
OwnedBuffer(const OwnedBuffer&) = delete;
OwnedBuffer&
operator=(const OwnedBuffer&) = delete;
OwnedBuffer(OwnedBuffer&&) = default;
OwnedBuffer&
operator=(OwnedBuffer&&) = delete;
// Implicit conversion so that this OwnedBuffer can be passed to anything taking a
// llarp_buffer_t
operator llarp_buffer_t()
{
return {buf.get(), sz};
}
// Creates an owned buffer by copying from a llarp_buffer_t. (Can also be used to copy from
// another OwnedBuffer via the implicit conversion operator above).
static OwnedBuffer
copy_from(const llarp_buffer_t& b);
// Creates an owned buffer by copying the used portion of a llarp_buffer_t (i.e. from base to
// cur), for when a llarp_buffer_t is used in write mode.
static OwnedBuffer
copy_used(const llarp_buffer_t& b);
/// copy everything in this owned buffer into a vector
std::vector<byte_t>
copy() const;
};
} // namespace llarp