You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lokinet/llarp/router/router.hpp

550 lines
12 KiB
C++

#pragma once
#include "route_poker.hpp"
#include <llarp/bootstrap.hpp>
#include <llarp/config/config.hpp>
#include <llarp/config/key_manager.hpp>
#include <llarp/consensus/reachability_testing.hpp>
#include <llarp/constants/link_layer.hpp>
#include <llarp/crypto/types.hpp>
#include <llarp/ev/ev.hpp>
#include <llarp/exit/context.hpp>
#include <llarp/handlers/tun.hpp>
#include <llarp/link/link_manager.hpp>
#include <llarp/path/path_context.hpp>
#include <llarp/profiling.hpp>
#include <llarp/router_contact.hpp>
#include <llarp/rpc/lokid_rpc_client.hpp>
#include <llarp/rpc/rpc_server.hpp>
#include <llarp/service/context.hpp>
#include <llarp/util/buffer.hpp>
#include <llarp/util/fs.hpp>
#include <llarp/util/mem.hpp>
#include <llarp/util/service_manager.hpp>
#include <llarp/util/status.hpp>
#include <llarp/util/str.hpp>
#include <llarp/util/time.hpp>
#include <oxenmq/address.h>
#include <functional>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <stdexcept>
#include <unordered_map>
#include <vector>
namespace llarp
{
/// number of routers to publish to
inline constexpr size_t INTROSET_RELAY_REDUNDANCY{2};
/// number of dht locations handled per relay
inline constexpr size_t INTROSET_REQS_PER_RELAY{2};
inline constexpr size_t INTROSET_STORAGE_REDUNDANCY{
(INTROSET_RELAY_REDUNDANCY * INTROSET_REQS_PER_RELAY)};
// TESTNET: these constants are shortened for testing purposes
inline constexpr std::chrono::milliseconds TESTNET_GOSSIP_INTERVAL{10min};
inline constexpr std::chrono::milliseconds RC_UPDATE_INTERVAL{5min};
inline constexpr std::chrono::milliseconds INITIAL_ATTEMPT_INTERVAL{30s};
// as we advance towards full mesh, we try to connect to this number per tick
inline constexpr int FULL_MESH_ITERATION{1};
inline constexpr std::chrono::milliseconds ROUTERID_UPDATE_INTERVAL{1h};
// DISCUSS: ask tom and jason about this
// how big of a time skip before we reset network state
inline constexpr std::chrono::milliseconds NETWORK_RESET_SKIP_INTERVAL{1min};
inline constexpr std::chrono::milliseconds REPORT_STATS_INTERVAL{10s};
inline constexpr std::chrono::milliseconds DECOMM_WARNING_INTERVAL{5min};
struct Contacts;
struct Router : std::enable_shared_from_this<Router>
{
friend class NodeDB;
explicit Router(EventLoop_ptr loop, std::shared_ptr<vpn::Platform> vpnPlatform);
~Router() = default;
private:
std::shared_ptr<RoutePoker> _route_poker;
std::chrono::steady_clock::time_point _next_explore_at;
llarp_time_t last_pump = 0s;
// transient iwp encryption key
fs::path transport_keyfile;
// long term identity key
fs::path identity_keyfile;
fs::path encryption_keyfile;
// path to write our self signed rc to
fs::path our_rc_file;
// use file based logging?
bool use_file_logging = false;
// our router contact
LocalRC router_contact;
std::shared_ptr<oxenmq::OxenMQ> _lmq;
path::BuildLimiter _pathbuild_limiter;
std::shared_ptr<EventLoopWakeup> loop_wakeup;
std::atomic<bool> is_stopping;
std::atomic<bool> is_running;
int _outbound_udp_socket = -1;
bool _is_service_node = false;
bool _testnet = false;
bool _testing_disabled = false;
bool _bootstrap_seed = false;
consensus::reachability_testing router_testing;
std::optional<oxen::quic::Address> _public_address; // public addr for relays
oxen::quic::Address _listen_address;
EventLoop_ptr _loop;
std::shared_ptr<vpn::Platform> _vpn;
path::PathContext paths;
exit::Context _exit_context;
SecretKey _identity;
SecretKey _encryption;
std::shared_ptr<Contacts> _contacts;
std::shared_ptr<NodeDB> _node_db;
llarp_time_t _started_at;
const oxenmq::TaggedThreadID _disk_thread;
llarp_time_t _last_stats_report = 0s;
llarp_time_t _next_decomm_warning = time_now_ms() + 15s;
std::shared_ptr<llarp::KeyManager> _key_manager;
std::shared_ptr<Config> _config;
uint32_t _path_build_count = 0;
std::unique_ptr<rpc::RPCServer> _rpc_server;
const llarp_time_t _randomStartDelay;
std::shared_ptr<rpc::LokidRpcClient> _rpc_client;
bool whitelist_received{false};
oxenmq::address rpc_addr;
Profiling _router_profiling;
fs::path _profile_file;
std::unique_ptr<LinkManager> _link_manager;
int client_router_connections;
// should we be sending padded messages every interval?
bool send_padding = false;
service::Context _hidden_service_context;
bool
should_report_stats(llarp_time_t now) const;
void
report_stats();
void
save_rc();
bool
from_config(const Config& conf);
bool
insufficient_peers() const;
protected:
std::chrono::system_clock::time_point last_rc_gossip{
std::chrono::system_clock::time_point::min()};
std::chrono::system_clock::time_point next_rc_gossip{last_rc_gossip};
std::chrono::system_clock::time_point next_initial_fetch_attempt{last_rc_gossip};
std::chrono::system_clock::time_point last_rc_fetch{last_rc_gossip};
std::chrono::system_clock::time_point last_rid_fetch{last_rc_gossip};
std::chrono::system_clock::time_point next_bootstrap_attempt{last_rc_gossip};
public:
bool
testnet() const
{
return _testnet;
}
bool
is_bootstrap_seed() const
{
return _bootstrap_seed;
}
int
required_num_client_conns() const
{
return client_router_connections;
}
const RouterID&
local_rid() const
{
return router_contact.router_id();
}
bool
needs_initial_fetch() const;
bool
needs_rebootstrap() const;
void
for_each_connection(std::function<void(link::Connection&)> func);
const Contacts&
contacts() const
{
return *_contacts;
}
Contacts&
contacts()
{
return *_contacts;
}
std::shared_ptr<Config>
config() const
{
return _config;
}
path::BuildLimiter&
pathbuild_limiter()
{
return _pathbuild_limiter;
}
const llarp::net::Platform&
net() const;
const std::shared_ptr<oxenmq::OxenMQ>&
lmq() const
{
return _lmq;
}
const std::shared_ptr<rpc::LokidRpcClient>&
rpc_client() const
{
return _rpc_client;
}
LinkManager&
link_manager()
{
return *_link_manager;
}
const LinkManager&
link_manager() const
{
return *_link_manager;
}
int
outbound_udp_socket() const
{
return _outbound_udp_socket;
}
exit::Context&
exitContext()
{
return _exit_context;
}
const std::shared_ptr<KeyManager>&
key_manager() const
{
return _key_manager;
}
const SecretKey&
identity() const
{
return _identity;
}
const SecretKey&
encryption() const
{
return _encryption;
}
Profiling&
router_profiling()
{
return _router_profiling;
}
const EventLoop_ptr&
loop() const
{
return _loop;
}
vpn::Platform*
vpn_platform() const
{
return _vpn.get();
}
const std::shared_ptr<NodeDB>&
node_db() const
{
return _node_db;
}
path::PathContext&
path_context()
{
return paths;
}
const LocalRC&
rc() const
{
return router_contact;
}
oxen::quic::Address
listen_addr() const;
util::StatusObject
ExtractStatus() const;
util::StatusObject
ExtractSummaryStatus() const;
const std::set<RouterID>&
get_whitelist() const;
void
set_router_whitelist(
const std::vector<RouterID>& whitelist,
const std::vector<RouterID>& greylist,
const std::vector<RouterID>& unfunded);
void
queue_work(std::function<void(void)> func);
void
queue_disk_io(std::function<void(void)> func);
/// Return true if we are operating as a service node and have received a service node whitelist
bool
have_snode_whitelist() const;
/// return true if we look like we are a decommissioned service node
bool
appears_decommed() const;
/// return true if we look like we are a registered, fully-staked service node (either active or
/// decommissioned). This condition determines when we are allowed to (and attempt to) connect
/// to other peers when running as a service node.
bool
appears_funded() const;
/// return true if we a registered service node; not that this only requires a partial stake,
/// and does not imply that this service node is *active* or fully funded.
bool
appears_registered() const;
/// return true if we look like we are allowed and able to test other routers
bool
can_test_routers() const;
llarp_time_t
Uptime() const;
service::Context&
hidden_service_context()
{
return _hidden_service_context;
}
const service::Context&
hidden_service_context() const
{
return _hidden_service_context;
}
llarp_time_t _last_tick = 0s;
std::function<void(void)> _router_close_cb;
void
set_router_close_cb(std::function<void(void)> hook)
{
_router_close_cb = hook;
}
bool
LooksAlive() const
{
const llarp_time_t current = now();
return current <= _last_tick || (current - _last_tick) <= llarp_time_t{30000};
}
const std::shared_ptr<RoutePoker>&
route_poker() const
{
return _route_poker;
}
void
TriggerPump();
void
PumpLL();
std::string
status_line();
void
init_inbounds();
void
init_outbounds();
std::optional<RouterID>
GetRandomGoodRouter();
/// initialize us as a service node
/// return true on success
bool
init_service_node();
bool
IsRunning() const;
/// return true if we are running in service node mode
bool
is_service_node() const;
std::optional<std::string>
OxendErrorState() const;
void
Close();
bool
Configure(std::shared_ptr<Config> conf, bool isSNode, std::shared_ptr<NodeDB> nodedb);
bool
StartRpcServer();
void
Freeze();
void
Thaw();
bool
Run();
/// stop running the router logic gracefully
void
Stop();
/// non graceful stop router
void
Die();
/// close all sessions and shutdown all links
void
StopLinks();
void
persist_connection_until(const RouterID& remote, llarp_time_t until);
bool
EnsureIdentity();
bool
EnsureEncryptionKey();
bool
SessionToRouterAllowed(const RouterID& router) const;
bool
PathToRouterAllowed(const RouterID& router) const;
/// return true if we are a client with an exit configured
bool
HasClientExit() const;
const byte_t*
pubkey() const
{
return seckey_to_pubkey(_identity);
}
/// send to remote router or queue for sending
/// returns false on overflow
/// returns true on successful queue
/// NOT threadsafe
/// MUST be called in the logic thread
// bool
// SendToOrQueue(
// const RouterID& remote, const AbstractLinkMessage& msg, SendStatusHandler handler);
bool
send_data_message(const RouterID& remote, std::string payload);
bool
send_control_message(
const RouterID& remote,
std::string endpoint,
std::string body,
std::function<void(oxen::quic::message m)> func = nullptr);
bool is_bootstrap_node(RouterID) const;
/// call internal router ticker
void
Tick();
llarp_time_t
now() const
{
return llarp::time_now_ms();
}
void
ConnectToRandomRouters(int N);
/// count the number of unique service nodes connected via pubkey
size_t
num_router_connections() const;
/// count the number of unique clients connected by pubkey
size_t
num_client_connections() const;
std::string
ShortName() const;
uint32_t
NextPathBuildNumber();
void
AfterStopLinks();
void
AfterStopIssued();
};
} // namespace llarp