You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lokinet/llarp/nodedb.cpp

551 lines
15 KiB
C++

#include "nodedb.hpp"
#include "crypto/types.hpp"
#include "dht/kademlia.hpp"
#include "router_contact.hpp"
#include "util/time.hpp"
#include <algorithm>
#include <unordered_map>
#include <utility>
static const char skiplist_subdirs[] = "0123456789abcdef";
static const std::string RC_FILE_EXT = ".signed";
namespace llarp
{
static void
EnsureSkiplist(fs::path nodedbDir)
{
if (not fs::exists(nodedbDir))
{
// if the old 'netdb' directory exists, move it to this one
fs::path parent = nodedbDir.parent_path();
fs::path old = parent / "netdb";
if (fs::exists(old))
fs::rename(old, nodedbDir);
else
fs::create_directory(nodedbDir);
}
if (not fs::is_directory(nodedbDir))
throw std::runtime_error{fmt::format("nodedb {} is not a directory", nodedbDir)};
for (const char& ch : skiplist_subdirs)
{
// this seems to be a problem on all targets
// perhaps cpp17::fs is just as screwed-up
// attempting to create a folder with no name
// what does this mean...?
if (!ch)
continue;
fs::path sub = nodedbDir / std::string(&ch, 1);
fs::create_directory(sub);
}
}
constexpr auto FlushInterval = 5min;
NodeDB::NodeDB(fs::path root, std::function<void(std::function<void()>)> diskCaller, Router* r)
: router{*r}
, m_Root{std::move(root)}
, disk(std::move(diskCaller))
, m_NextFlushAt{time_now_ms() + FlushInterval}
{
EnsureSkiplist(m_Root);
}
void
NodeDB::Tick(llarp_time_t now)
{
if (m_NextFlushAt == 0s)
return;
if (now > m_NextFlushAt)
{
router.loop()->call([this]() {
m_NextFlushAt += FlushInterval;
// make copy of all rcs
std::vector<RemoteRC> copy;
for (const auto& item : known_rcs)
copy.push_back(item.second);
// flush them to disk in one big job
// TODO: split this up? idk maybe some day...
disk([this, data = std::move(copy)]() {
for (const auto& rc : data)
rc.write(get_path_by_pubkey(rc.router_id()));
});
});
}
}
fs::path
NodeDB::get_path_by_pubkey(RouterID pubkey) const
{
std::string hexString = oxenc::to_hex(pubkey.begin(), pubkey.end());
std::string skiplistDir;
const llarp::RouterID r{pubkey};
std::string fname = r.ToString();
skiplistDir += hexString[0];
fname += RC_FILE_EXT;
return m_Root / skiplistDir / fname;
}
bool
NodeDB::want_rc(const RouterID& rid) const
{
if (not router.is_service_node())
return true;
return registered_routers.count(rid);
}
void
NodeDB::set_bootstrap_routers(const std::set<RemoteRC>& rcs)
{
bootstraps.clear(); // this function really shouldn't be called more than once, but...
for (const auto& rc : rcs)
{
bootstraps.emplace(rc.router_id(), rc);
}
}
/// Called in normal operation when the relay we fetched RCs from gives either a "bad"
/// response or a timeout. Attempts to switch to a new relay as our RC source, using
/// existing connections if possible, and respecting pinned edges.
void
NodeDB::rotate_rc_source()
{
auto conn_count = router.link_manager().get_num_connected();
// This function makes no sense to be called if we have no connections...
if (conn_count == 0)
throw std::runtime_error{"Called rotate_rc_source with no connections, does not make sense!"};
// We should not be in this function if client_known_routers isn't populated
if (client_known_routers.size() <= 1)
throw std::runtime_error{"Cannot rotate RC source without RC source(s) to rotate to!"};
RemoteRC new_source{};
router.link_manager().get_random_connected(new_source);
if (conn_count == 1)
{
// if we only have one connection, it must be current rc fetch source
assert(new_source.router_id() == rc_fetch_source);
if (pinned_edges.size() == 1)
{
// only one pinned edge set, use it even though it gave unsatisfactory RCs
assert(rc_fetch_source == *(pinned_edges.begin()));
log::warning(
logcat,
"Single pinned edge {} gave bad RC response; still using it despite this.",
rc_fetch_source);
return;
}
// only one connection, choose a new relay to connect to for rc fetching
RouterID r = rc_fetch_source;
while (r == rc_fetch_source)
{
std::sample(client_known_routers.begin(), client_known_routers.end(), &r, 1, csrng);
}
rc_fetch_source = std::move(r);
return;
}
// choose one of our other existing connections to use as the RC fetch source
while (new_source.router_id() == rc_fetch_source)
{
router.link_manager().get_random_connected(new_source);
}
rc_fetch_source = new_source.router_id();
}
// TODO: trust model
void
NodeDB::ingest_rcs(RouterID source, std::vector<RemoteRC> rcs, rc_time timestamp)
{
(void)source;
// TODO: if we don't currently have a "trusted" relay we've been fetching from,
// this will be a full list of RCs. We need to first check if it aligns closely
// with our trusted RouterID list, then replace our RCs with the incoming set.
for (auto& rc : rcs)
put_rc_if_newer(std::move(rc), timestamp);
// TODO: if we have a "trusted" relay we've been fetching from, this will be
// an incremental update to the RC list, so *after* insertion we check if the
// RCs' RouterIDs closely match our trusted RouterID list.
last_rc_update_relay_timestamp = timestamp;
}
// TODO: trust model
void
NodeDB::ingest_router_ids(RouterID source, std::vector<RouterID> ids)
{
router_id_fetch_responses[source] = std::move(ids);
router_id_response_count++;
if (router_id_response_count == router_id_fetch_sources.size())
{
// TODO: reconcile all the responses, for now just insert all
for (const auto& [rid, responses] : router_id_fetch_responses)
{
// TODO: empty == failure, handle that case
for (const auto& response : responses)
{
client_known_routers.insert(std::move(response));
}
}
router_id_fetch_in_progress = false;
}
}
void
NodeDB::fetch_rcs()
{
std::vector<RouterID> needed;
const auto now =
std::chrono::time_point_cast<std::chrono::seconds>(std::chrono::system_clock::now());
for (const auto& [rid, rc] : known_rcs)
{
if (now - rc.timestamp() > RouterContact::OUTDATED_AGE)
needed.push_back(rid);
}
router.link_manager().fetch_rcs(
rc_fetch_source, last_rc_update_relay_timestamp, std::move(needed));
}
void
NodeDB::fetch_router_ids()
{
if (router_id_fetch_in_progress)
return;
if (router_id_fetch_sources.empty())
select_router_id_sources();
// if we *still* don't have fetch sources, we can't exactly fetch...
if (router_id_fetch_sources.empty())
{
log::info(logcat, "Attempting to fetch RouterIDs, but have no source from which to do so.");
return;
}
router_id_fetch_in_progress = true;
router_id_response_count = 0;
router_id_fetch_responses.clear();
for (const auto& rid : router_id_fetch_sources)
router.link_manager().fetch_router_ids(rid);
}
void
NodeDB::select_router_id_sources(std::unordered_set<RouterID> excluded)
{
// TODO: bootstrapping should be finished before this is called, so this
// shouldn't happen; need to make sure that's the case.
if (client_known_routers.empty())
return;
// keep using any we've been using, but remove `excluded` ones
for (const auto& r : excluded)
router_id_fetch_sources.erase(r);
// only know so many routers, so no need to randomize
if (client_known_routers.size() <= (ROUTER_ID_SOURCE_COUNT + excluded.size()))
{
for (const auto& r : client_known_routers)
{
if (excluded.count(r))
continue;
router_id_fetch_sources.insert(r);
}
}
// select at random until we have chosen enough
while (router_id_fetch_sources.size() < ROUTER_ID_SOURCE_COUNT)
{
RouterID r;
std::sample(client_known_routers.begin(), client_known_routers.end(), &r, 1, csrng);
if (excluded.count(r) == 0)
router_id_fetch_sources.insert(r);
}
}
void
NodeDB::set_router_whitelist(
const std::vector<RouterID>& whitelist,
const std::vector<RouterID>& greylist,
const std::vector<RouterID>& greenlist)
{
if (whitelist.empty())
return;
registered_routers.clear();
registered_routers.insert(whitelist.begin(), whitelist.end());
registered_routers.insert(greylist.begin(), greylist.end());
registered_routers.insert(greenlist.begin(), greenlist.end());
router_whitelist.clear();
router_whitelist.insert(whitelist.begin(), whitelist.end());
router_greylist.clear();
router_greylist.insert(greylist.begin(), greylist.end());
router_greenlist.clear();
router_greenlist.insert(greenlist.begin(), greenlist.end());
log::info(
logcat, "lokinet service node list now has ", router_whitelist.size(), " active routers");
}
std::optional<RouterID>
NodeDB::get_random_whitelist_router() const
{
const auto sz = router_whitelist.size();
if (sz == 0)
return std::nullopt;
auto itr = router_whitelist.begin();
if (sz > 1)
std::advance(itr, randint() % sz);
return *itr;
}
bool
NodeDB::is_connection_allowed(const RouterID& remote) const
{
if (pinned_edges.size() && pinned_edges.count(remote) == 0 && bootstraps.count(remote) == 0)
{
return false;
}
if (not router.is_service_node())
return true;
return router_whitelist.count(remote) or router_greylist.count(remote);
}
bool
NodeDB::is_first_hop_allowed(const RouterID& remote) const
{
if (pinned_edges.size() && pinned_edges.count(remote) == 0)
return false;
return true;
}
void
NodeDB::load_from_disk()
{
if (m_Root.empty())
return;
std::set<fs::path> purge;
const auto now = time_now_ms();
for (const char& ch : skiplist_subdirs)
{
if (!ch)
continue;
std::string p;
p += ch;
fs::path sub = m_Root / p;
llarp::util::IterDir(sub, [&](const fs::path& f) -> bool {
// skip files that are not suffixed with .signed
if (not(fs::is_regular_file(f) and f.extension() == RC_FILE_EXT))
return true;
RemoteRC rc{};
if (not rc.read(f))
{
// try loading it, purge it if it is junk
purge.emplace(f);
return true;
}
if (rc.is_expired(now))
{
// rc expired dont load it and purge it later
purge.emplace(f);
return true;
}
known_rcs.emplace(rc.router_id(), rc);
// TODO: the list of relays should be maintained and stored separately from
// the RCs, as we keep older RCs around in case we go offline and need to
// bootstrap, but they shouldn't be in the "good relays" list.
client_known_routers.insert(rc.router_id());
return true;
});
}
if (not purge.empty())
{
log::warning(logcat, "removing {} invalid RCs from disk", purge.size());
for (const auto& fpath : purge)
fs::remove(fpath);
}
}
void
NodeDB::save_to_disk() const
{
if (m_Root.empty())
return;
router.loop()->call([this]() {
for (const auto& item : known_rcs)
item.second.write(get_path_by_pubkey(item.first));
});
}
bool
NodeDB::has_rc(RouterID pk) const
{
return known_rcs.count(pk);
}
std::optional<RemoteRC>
NodeDB::get_rc(RouterID pk) const
{
const auto itr = known_rcs.find(pk);
if (itr == known_rcs.end())
return std::nullopt;
return itr->second;
}
void
NodeDB::remove_router(RouterID pk)
{
router.loop()->call([this, pk]() {
known_rcs.erase(pk);
remove_many_from_disk_async({pk});
});
}
void
NodeDB::remove_stale_rcs()
{
auto cutoff_time =
std::chrono::time_point_cast<std::chrono::seconds>(std::chrono::system_clock::now());
cutoff_time -= router.is_service_node() ? RouterContact::OUTDATED_AGE : RouterContact::LIFETIME;
for (auto itr = known_rcs.begin(); itr != known_rcs.end();)
{
if (cutoff_time > itr->second.timestamp())
{
log::info(logcat, "Pruning RC for {}, as it is too old to keep.", itr->first);
known_rcs.erase(itr);
continue;
}
itr++;
}
}
bool
NodeDB::put_rc(RemoteRC rc, rc_time now)
{
const auto& rid = rc.router_id();
if (not want_rc(rid))
return false;
known_rcs.erase(rid);
known_rcs.emplace(rid, std::move(rc));
last_rc_update_times[rid] = now;
return true;
}
size_t
NodeDB::num_loaded() const
{
return router.loop()->call_get([this]() { return known_rcs.size(); });
}
bool
NodeDB::put_rc_if_newer(RemoteRC rc, rc_time now)
{
auto itr = known_rcs.find(rc.router_id());
if (itr == known_rcs.end() or itr->second.other_is_newer(rc))
{
return put_rc(std::move(rc), now);
}
return false;
}
void
NodeDB::remove_many_from_disk_async(std::unordered_set<RouterID> remove) const
{
if (m_Root.empty())
return;
// build file list
std::set<fs::path> files;
for (auto id : remove)
{
files.emplace(get_path_by_pubkey(std::move(id)));
}
// remove them from the disk via the diskio thread
disk([files]() {
for (auto fpath : files)
fs::remove(fpath);
});
}
RemoteRC
NodeDB::find_closest_to(llarp::dht::Key_t location) const
{
return router.loop()->call_get([this, location]() -> RemoteRC {
RemoteRC rc;
const llarp::dht::XorMetric compare(location);
VisitAll([&rc, compare](const auto& otherRC) {
const auto& rid = rc.router_id();
if (rid.IsZero() || compare(dht::Key_t{otherRC.router_id()}, dht::Key_t{rid}))
{
rc = otherRC;
return;
}
});
return rc;
});
}
std::vector<RemoteRC>
NodeDB::find_many_closest_to(llarp::dht::Key_t location, uint32_t numRouters) const
{
return router.loop()->call_get([this, location, numRouters]() -> std::vector<RemoteRC> {
std::vector<const RemoteRC*> all;
all.reserve(known_rcs.size());
for (auto& entry : known_rcs)
{
all.push_back(&entry.second);
}
auto it_mid = numRouters < all.size() ? all.begin() + numRouters : all.end();
std::partial_sort(
all.begin(), it_mid, all.end(), [compare = dht::XorMetric{location}](auto* a, auto* b) {
return compare(*a, *b);
});
std::vector<RemoteRC> closest;
closest.reserve(numRouters);
for (auto it = all.begin(); it != it_mid; ++it)
closest.push_back(**it);
return closest;
});
}
} // namespace llarp