Add code for tutorial 11

pull/37/head
Andre Richter 5 years ago
parent 420f400b2e
commit 2993c8143c
No known key found for this signature in database
GPG Key ID: 2116C1AB102F615E

@ -0,0 +1,10 @@
{
"editor.formatOnSave": true,
"rust.features": [
"bsp_rpi3"
],
"rust.all_targets": false,
"editor.rulers": [
100
],
}

@ -0,0 +1,42 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
[[package]]
name = "cortex-a"
version = "2.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"register 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "kernel"
version = "0.1.0"
dependencies = [
"cortex-a 2.7.0 (registry+https://github.com/rust-lang/crates.io-index)",
"r0 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
"register 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "r0"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "register"
version = "0.3.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"tock-registers 0.3.0 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "tock-registers"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
[metadata]
"checksum cortex-a 2.7.0 (registry+https://github.com/rust-lang/crates.io-index)" = "cbb16c411ab74044f174746a6cbae67bcdebea126e376b5441e5986e6a6aa950"
"checksum r0 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)" = "e2a38df5b15c8d5c7e8654189744d8e396bddc18ad48041a500ce52d6948941f"
"checksum register 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)" = "469bb5ddde81d67fb8bba4e14d77689b8166cfd077abe7530591cefe29d05823"
"checksum tock-registers 0.3.0 (registry+https://github.com/rust-lang/crates.io-index)" = "c758f5195a2e0df9d9fecf6f506506b2766ff74cf64db1e995c87e2761a5c3e2"

@ -0,0 +1,21 @@
[package]
name = "kernel"
version = "0.1.0"
authors = ["Andre Richter <andre.o.richter@gmail.com>"]
edition = "2018"
[package.metadata.cargo-xbuild]
sysroot_path = "../xbuild_sysroot"
# The features section is used to select the target board.
[features]
default = []
bsp_rpi3 = ["cortex-a", "register"]
bsp_rpi4 = ["cortex-a", "register"]
[dependencies]
r0 = "0.2.*"
# Optional dependencies
cortex-a = { version = "2.*", optional = true }
register = { version = "0.3.*", optional = true }

@ -0,0 +1,127 @@
## SPDX-License-Identifier: MIT
##
## Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
# Default to the RPi3
ifndef BSP
BSP = rpi3
endif
# BSP-specific arguments
ifeq ($(BSP),rpi3)
TARGET = aarch64-unknown-none-softfloat
OUTPUT = kernel8.img
QEMU_BINARY = qemu-system-aarch64
QEMU_MACHINE_TYPE = raspi3
QEMU_MISC_ARGS = -serial stdio
OPENOCD_ARG = -f /openocd/tcl/interface/ftdi/olimex-arm-usb-tiny-h.cfg -f /openocd/rpi3.cfg
JTAG_BOOT_IMAGE = jtag_boot_rpi3.img
LINKER_FILE = src/bsp/rpi/link.ld
RUSTC_MISC_ARGS = -C target-cpu=cortex-a53
else ifeq ($(BSP),rpi4)
TARGET = aarch64-unknown-none-softfloat
OUTPUT = kernel8.img
# QEMU_BINARY = qemu-system-aarch64
# QEMU_MACHINE_TYPE =
# QEMU_MISC_ARGS = -serial stdio
OPENOCD_ARG = -f /openocd/tcl/interface/ftdi/olimex-arm-usb-tiny-h.cfg -f /openocd/rpi4.cfg
JTAG_BOOT_IMAGE = jtag_boot_rpi4.img
LINKER_FILE = src/bsp/rpi/link.ld
RUSTC_MISC_ARGS = -C target-cpu=cortex-a72
endif
SOURCES = $(wildcard **/*.rs) $(wildcard **/*.S) $(wildcard **/*.ld)
XRUSTC_CMD = cargo xrustc \
--target=$(TARGET) \
--features bsp_$(BSP) \
--release \
-- \
-C link-arg=-T$(LINKER_FILE) \
$(RUSTC_MISC_ARGS)
CARGO_OUTPUT = target/$(TARGET)/release/kernel
OBJCOPY_CMD = cargo objcopy \
-- \
--strip-all \
-O binary
CONTAINER_UTILS = rustembedded/osdev-utils
DOCKER_CMD = docker run -it --rm
DOCKER_ARG_CURDIR = -v $(shell pwd):/work -w /work
DOCKER_ARG_TTY = --privileged -v /dev:/dev
DOCKER_ARG_JTAG = -v $(shell pwd)/../X1_JTAG_boot:/jtag
DOCKER_ARG_NET = --network host
DOCKER_EXEC_QEMU = $(QEMU_BINARY) -M $(QEMU_MACHINE_TYPE) -kernel $(OUTPUT)
DOCKER_EXEC_RASPBOOT = raspbootcom
DOCKER_EXEC_RASPBOOT_DEV = /dev/ttyUSB0
# DOCKER_EXEC_RASPBOOT_DEV = /dev/ttyACM0
.PHONY: all doc qemu chainboot clippy clean readelf objdump nm
all: clean $(OUTPUT)
$(CARGO_OUTPUT): $(SOURCES)
RUSTFLAGS="-D warnings -D missing_docs" $(XRUSTC_CMD)
$(OUTPUT): $(CARGO_OUTPUT)
cp $< .
$(OBJCOPY_CMD) $< $(OUTPUT)
doc:
cargo xdoc --target=$(TARGET) --features bsp_$(BSP) --document-private-items
xdg-open target/$(TARGET)/doc/kernel/index.html
ifeq ($(QEMU_MACHINE_TYPE),)
qemu:
@echo "This board is not yet supported for QEMU."
else
qemu: all
$(DOCKER_CMD) $(DOCKER_ARG_CURDIR) $(CONTAINER_UTILS) \
$(DOCKER_EXEC_QEMU) $(QEMU_MISC_ARGS)
endif
chainboot: all
$(DOCKER_CMD) $(DOCKER_ARG_CURDIR) $(DOCKER_ARG_TTY) \
$(CONTAINER_UTILS) $(DOCKER_EXEC_RASPBOOT) $(DOCKER_EXEC_RASPBOOT_DEV) \
$(OUTPUT)
jtagboot:
$(DOCKER_CMD) $(DOCKER_ARG_TTY) $(DOCKER_ARG_JTAG) $(CONTAINER_UTILS) \
$(DOCKER_EXEC_RASPBOOT) $(DOCKER_EXEC_RASPBOOT_DEV) \
/jtag/$(JTAG_BOOT_IMAGE)
openocd:
$(DOCKER_CMD) $(DOCKER_ARG_TTY) $(DOCKER_ARG_NET) $(CONTAINER_UTILS) \
openocd $(OPENOCD_ARG)
define gen_gdb
RUSTFLAGS="-D warnings -D missing_docs" $(XRUSTC_CMD) $1
cp $(CARGO_OUTPUT) kernel_for_jtag
$(DOCKER_CMD) $(DOCKER_ARG_CURDIR) $(DOCKER_ARG_NET) $(CONTAINER_UTILS) \
gdb-multiarch -q kernel_for_jtag
endef
gdb: clean $(SOURCES)
$(call gen_gdb,-C debuginfo=2)
gdb-opt0: clean $(SOURCES)
$(call gen_gdb,-C debuginfo=2 -C opt-level=0)
clippy:
cargo xclippy --target=$(TARGET) --features bsp_$(BSP)
clean:
cargo clean
readelf:
readelf -a kernel
objdump:
cargo objdump --target $(TARGET) -- -disassemble -print-imm-hex kernel
nm:
cargo nm --target $(TARGET) -- kernel | sort

@ -0,0 +1,967 @@
# Tutorial 11 - Virtual Memory
## tl;dr
The `MMU` is turned on; A simple scheme is used: static `64 KiB` page tables; For educational
purposes, we write to a remapped `UART`.
## Introduction
Virtual memory is an immensely complex, but important and powerful topic. In this tutorial, we start
slow and easy by switching on the `MMU`, using static page tables and mapping everything at once.
## MMU and paging theory
At this point, we will not re-invent the wheel and go into detailed descriptions of how paging in
modern application-grade processors works. The internet is full of great resources regarding this
topic, and we encourage you to read some of it to get a high-level understanding of the topic.
To follow the rest of this `AArch64` specific tutorial, I strongly recommend that you stop right
here and first read `Chapter 12` of the [ARM Cortex-A Series Programmer's Guide for ARMv8-A] before
you continue. This will set you up with all the `AArch64`-specific knowledge needed to follow along.
Back from reading `Chapter 12` already? Good job :+1:!
[ARM Cortex-A Series Programmer's Guide for ARMv8-A]: http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf
## Approach
- Everything is mapped using a `64 KiB` granule.
- Attributes of different regions (e.g. R/W, no-execute, cached/uncached, etc...) are set in a
high-level data structure in `BSP` code.
- `Arch` code picks up this high-level description and maps it using its specific MMU HW.
### BSP: `bsp/rpi/virt_mem_layout.rs`
This file is used to describe our kernel's memory layout in a high-level abstraction using our own
descriptor format. We can define ranges of arbitrary length and set respective attributes, for
example if the bits and bytes in this range should be executable or not.
The descriptors we use here are agnostic of the hardware `MMU`'s actual descriptors, and we are also
agnostic of the paging granule the `MMU` will use. Having this distinction is less of a technical
need and more a convenience feature for us in order to easily describe the kernel's memory layout,
and hopefully it makes the whole concept a bit more graspable for the reader.
The file contains an instance of `memory::KernelVirtualLayout`,which stores these descriptors. The
policy is to only store regions that are **not** ordinary, normal chacheable DRAM. However, nothing
prevents you from defining those too if you wish to. Here is an example for the device MMIO region:
```rust
// Device MMIO.
RangeDescriptor {
name: "Device MMIO",
virtual_range: || {
RangeInclusive::new(memory_map::mmio::BASE, memory_map::mmio::END_INCLUSIVE)
},
translation: Translation::Identity,
attribute_fields: AttributeFields {
mem_attributes: MemAttributes::Device,
acc_perms: AccessPermissions::ReadWrite,
execute_never: true,
},
},
```
`KernelVirtualLayout` also provides the following method:
```rust
pub fn get_virt_addr_properties(
&self,
virt_addr: usize,
) -> Result<(usize, AttributeFields), &'static str>
```
It will be used by the `arch`'s MMU code to request attributes for a virtual address and the
translation of the address. The function scans for a descriptor that contains the queried address,
and returns the respective findings for the first entry that is a hit. If no entry is found, it
returns default attributes for normal chacheable DRAM and the input address, hence telling the `MMU`
code that the requested address should be `identity mapped`.
Due to this default return, it is technicall not needed to define normal cacheable DRAM regions.
### Arch: `arch/aarch64/mmu.rs`
This file contains the `AArch64` specific code. It is a driver, if you like, and the paging granule
is hardcoded here (`64 KiB` page descriptors).
The actual page tables are stored in a global instance of the `PageTables` struct:
```rust
// Two newtypes for added type safety, so that you cannot accidentally place a TableDescriptor into
// a PageDescriptor slot in `struct PageTables`, and vice versa.
#[derive(Copy, Clone)]
#[repr(transparent)]
struct RawTableDescriptor(u64);
#[derive(Copy, Clone)]
#[repr(transparent)]
struct RawPageDescriptor(u64);
/// Big monolithic struct for storing the page tables. Individual levels must be 64 KiB aligned,
/// hence the "reverse" order of appearance.
#[repr(C)]
#[repr(align(65536))]
struct PageTables<const N: usize> {
// Page descriptors, covering 64 KiB windows per entry.
lvl3: [[RawPageDescriptor; 8192]; N],
// Table descriptors, covering 512 MiB windows.
lvl2: [RawTableDescriptor; N],
}
/// Usually evaluates to 1 GiB for RPi3 and 4 GiB for RPi 4.
const ENTRIES_512_MIB: usize = bsp::addr_space_size() >> FIVETWELVE_MIB_SHIFT;
/// The page tables.
///
/// Supposed to land in `.bss`. Therefore, ensure that they boil down to all "0" entries.
static mut TABLES: PageTables<{ ENTRIES_512_MIB }> = PageTables {
lvl3: [[RawPageDescriptor(0); 8192]; ENTRIES_512_MIB],
lvl2: [RawTableDescriptor(0); ENTRIES_512_MIB],
};
```
They are populated using `get_virt_addr_properties()` and a bunch of utility functions that convert
our own descriptors to the actual `64 bit` integer entries needed by the MMU hardware for the page
table arrays.
Each page table has an entry (`AttrIndex`) that indexes into the [MAIR_EL1] register, which holds
information about the cacheability of the respective page. We currently define normal cacheable
memory and device memory (which is not cached).
[MAIR_EL1]: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0500d/CIHDHJBB.html
```rust
/// Setup function for the MAIR_EL1 register.
fn set_up_mair() {
// Define the memory types being mapped.
MAIR_EL1.write(
// Attribute 1 - Cacheable normal DRAM
MAIR_EL1::Attr1_HIGH::Memory_OuterWriteBack_NonTransient_ReadAlloc_WriteAlloc
+ MAIR_EL1::Attr1_LOW_MEMORY::InnerWriteBack_NonTransient_ReadAlloc_WriteAlloc
// Attribute 0 - Device
+ MAIR_EL1::Attr0_HIGH::Device
+ MAIR_EL1::Attr0_LOW_DEVICE::Device_nGnRE,
);
}
```
Afterwards, the [Translation Table Base Register 0 - EL1] is set up with the base address of the
`lvl2` and the [Translation Control Register - EL1] is configured.
Finally, the MMU is turned on through the [System Control Register - EL1]. The last step also
enables caching for data and instructions.
[Translation Table Base Register 0 - EL1]: https://docs.rs/crate/cortex-a/2.4.0/source/src/regs/ttbr0_el1.rs
[Translation Control Register - EL1]: https://docs.rs/crate/cortex-a/2.4.0/source/src/regs/tcr_el1.rs
[System Control Register - EL1]: https://docs.rs/crate/cortex-a/2.4.0/source/src/regs/sctlr_el1.rs
### `link.ld`
We need to align the `ro` section to `64 KiB` so that it doesn't overlap with the next section that
needs read/write attributes. This blows up the binary in size, but is a small price to pay
considering that it reduces the amount of static paging entries significantly, when compared to the
classical `4 KiB` granule.
## Address translation examples
For educational purposes, a layout is defined which allows to access the `UART` via two different
virtual addresses:
- Since we identity map the whole `Device MMIO` region, it is accessible by asserting its physical
base address (`0x3F20_1000` or `0xFA20_1000` depending on which RPi you use) after the `MMU` is
turned on.
- Additionally, it is also mapped into the last `64 KiB` entry of the `lvl3` table, making it
accessible through base address `0x1FFF_1000`.
The following block diagram visualizes the underlying translation for the second mapping.
### Address translation using a 64 KiB page descriptor
![4 KiB translation block diagram](../doc/page_tables_64KiB.png)
## Zero-cost abstraction
The MMU init code is again a good example to see the great potential of Rust's zero-cost
abstractions[[1]][[2]] for embedded programming.
Take this piece of code for setting up the `MAIR_EL1` register using the [cortex-a] crate:
[1]: https://blog.rust-lang.org/2015/05/11/traits.html
[2]: https://ruudvanasseldonk.com/2016/11/30/zero-cost-abstractions
[cortex-a]: https://crates.io/crates/cortex-a
```rust
/// Setup function for the MAIR_EL1 register.
fn set_up_mair() {
// Define the memory types being mapped.
MAIR_EL1.write(
// Attribute 1 - Cacheable normal DRAM
MAIR_EL1::Attr1_HIGH::Memory_OuterWriteBack_NonTransient_ReadAlloc_WriteAlloc
+ MAIR_EL1::Attr1_LOW_MEMORY::InnerWriteBack_NonTransient_ReadAlloc_WriteAlloc
// Attribute 0 - Device
+ MAIR_EL1::Attr0_HIGH::Device
+ MAIR_EL1::Attr0_LOW_DEVICE::Device_nGnRE,
);
}
```
This piece of code is super expressive, and it makes use of `traits`, different `types` and
`constants` to provide type-safe register manipulation.
In the end, this code sets the first four bytes of the register to certain values according to the
data sheet. Looking at the generated code, we can see that despite all the type-safety and
abstractions, it boils down to two assembly instructions:
```text
00000000000818d8 kernel::arch::aarch64::mmu::init::h97006e19222f36e2:
...
8191c: 88 e0 9f 52 mov w8, #0xff04
...
81924: 08 a2 18 d5 msr MAIR_EL1, x8
```
## Test it
```console
make chainbot
[...]
### Listening on /dev/ttyUSB0
__ __ _ _ _ _
| \/ (_)_ _ (_) | ___ __ _ __| |
| |\/| | | ' \| | |__/ _ \/ _` / _` |
|_| |_|_|_||_|_|____\___/\__,_\__,_|
Raspberry Pi 3
[ML] Requesting binary
### sending kernel kernel8.img [65560 byte]
### finished sending
[ML] Loaded! Executing the payload now
[ 5.732854] Booting on: Raspberry Pi 3
[ 5.792441] MMU online
[ 5.793306] Special memory regions:
[ 5.796778] 0x00080000 - 0x0008FFFF | 64 KiB | C RO PX | Kernel code and RO data
[ 5.805026] 0x1FFF0000 - 0x1FFFFFFF | 64 KiB | Dev RW PXN | Remapped Device MMIO
[ 5.813014] 0x3F000000 - 0x3FFFFFFF | 16 MiB | Dev RW PXN | Device MMIO
[ 5.820220] Current privilege level: EL1
[ 5.824127] Exception handling state:
[ 5.827774] Debug: Masked
[ 5.830986] SError: Masked
[ 5.834199] IRQ: Masked
[ 5.837412] FIQ: Masked
[ 5.840624] Architectural timer resolution: 52 ns
[ 5.845312] Drivers loaded:
[ 5.848091] 1. GPIO
[ 5.850695] 2. PL011Uart
[ 5.853734] Timer test, spinning for 1 second
[ !!! ] Writing through the remapped UART at 0x1FFF_1000
[ 6.862236] Echoing input now
```
## Diff to previous
```diff
diff -uNr 10_privilege_level/src/arch/aarch64/mmu.rs 11_virtual_memory/src/arch/aarch64/mmu.rs
--- 10_privilege_level/src/arch/aarch64/mmu.rs
+++ 11_virtual_memory/src/arch/aarch64/mmu.rs
@@ -0,0 +1,292 @@
+// SPDX-License-Identifier: MIT
+//
+// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
+
+//! Memory Management Unit.
+//!
+//! Static page tables, compiled on boot; Everything 64 KiB granule.
+
+use crate::{
+ bsp,
+ memory::{AccessPermissions, AttributeFields, MemAttributes},
+};
+use core::convert;
+use cortex_a::{barrier, regs::*};
+use register::register_bitfields;
+
+// A table descriptor, as per AArch64 Reference Manual Figure D4-15.
+register_bitfields! {u64,
+ STAGE1_TABLE_DESCRIPTOR [
+ /// Physical address of the next page table.
+ NEXT_LEVEL_TABLE_ADDR_64KiB OFFSET(16) NUMBITS(32) [], // [47:16]
+
+ TYPE OFFSET(1) NUMBITS(1) [
+ Block = 0,
+ Table = 1
+ ],
+
+ VALID OFFSET(0) NUMBITS(1) [
+ False = 0,
+ True = 1
+ ]
+ ]
+}
+
+// A level 3 page descriptor, as per AArch64 Reference Manual Figure D4-17.
+register_bitfields! {u64,
+ STAGE1_PAGE_DESCRIPTOR [
+ /// Privileged execute-never
+ PXN OFFSET(53) NUMBITS(1) [
+ False = 0,
+ True = 1
+ ],
+
+ /// Physical address of the next page table (lvl2) or the page descriptor (lvl3).
+ OUTPUT_ADDR_64KiB OFFSET(16) NUMBITS(32) [], // [47:16]
+
+ /// Access flag
+ AF OFFSET(10) NUMBITS(1) [
+ False = 0,
+ True = 1
+ ],
+
+ /// Shareability field
+ SH OFFSET(8) NUMBITS(2) [
+ OuterShareable = 0b10,
+ InnerShareable = 0b11
+ ],
+
+ /// Access Permissions
+ AP OFFSET(6) NUMBITS(2) [
+ RW_EL1 = 0b00,
+ RW_EL1_EL0 = 0b01,
+ RO_EL1 = 0b10,
+ RO_EL1_EL0 = 0b11
+ ],
+
+ /// Memory attributes index into the MAIR_EL1 register
+ AttrIndx OFFSET(2) NUMBITS(3) [],
+
+ TYPE OFFSET(1) NUMBITS(1) [
+ Block = 0,
+ Table = 1
+ ],
+
+ VALID OFFSET(0) NUMBITS(1) [
+ False = 0,
+ True = 1
+ ]
+ ]
+}
+
+// Two newtypes for added type safety, so that you cannot accidentally place a TableDescriptor into
+// a PageDescriptor slot in `struct PageTables`, and vice versa.
+#[derive(Copy, Clone)]
+#[repr(transparent)]
+struct RawTableDescriptor(u64);
+
+#[derive(Copy, Clone)]
+#[repr(transparent)]
+struct RawPageDescriptor(u64);
+
+const SIXTYFOUR_KIB_SHIFT: usize = 16; // log2(64 * 1024)
+const FIVETWELVE_MIB_SHIFT: usize = 29; // log2(512 * 1024 * 1024)
+
+/// Big monolithic struct for storing the page tables. Individual levels must be 64 KiB aligned,
+/// hence the "reverse" order of appearance.
+#[repr(C)]
+#[repr(align(65536))]
+struct PageTables<const N: usize> {
+ // Page descriptors, covering 64 KiB windows per entry.
+ lvl3: [[RawPageDescriptor; 8192]; N],
+ // Table descriptors, covering 512 MiB windows.
+ lvl2: [RawTableDescriptor; N],
+}
+
+/// Usually evaluates to 1 GiB for RPi3 and 4 GiB for RPi 4.
+const ENTRIES_512_MIB: usize = bsp::addr_space_size() >> FIVETWELVE_MIB_SHIFT;
+
+/// The page tables.
+///
+/// Supposed to land in `.bss`. Therefore, ensure that they boil down to all "0" entries.
+static mut TABLES: PageTables<{ ENTRIES_512_MIB }> = PageTables {
+ lvl3: [[RawPageDescriptor(0); 8192]; ENTRIES_512_MIB],
+ lvl2: [RawTableDescriptor(0); ENTRIES_512_MIB],
+};
+
+trait BaseAddr {
+ fn base_addr_u64(&self) -> u64;
+ fn base_addr_usize(&self) -> usize;
+}
+
+impl<T, const N: usize> BaseAddr for [T; N] {
+ fn base_addr_u64(&self) -> u64 {
+ self as *const T as u64
+ }
+
+ fn base_addr_usize(&self) -> usize {
+ self as *const T as usize
+ }
+}
+
+/// A descriptor pointing to the next page table.
+struct TableDescriptor(register::FieldValue<u64, STAGE1_TABLE_DESCRIPTOR::Register>);
+
+impl TableDescriptor {
+ fn new(next_lvl_table_addr: usize) -> TableDescriptor {
+ let shifted = next_lvl_table_addr >> SIXTYFOUR_KIB_SHIFT;
+
+ TableDescriptor(
+ STAGE1_TABLE_DESCRIPTOR::VALID::True
+ + STAGE1_TABLE_DESCRIPTOR::TYPE::Table
+ + STAGE1_TABLE_DESCRIPTOR::NEXT_LEVEL_TABLE_ADDR_64KiB.val(shifted as u64),
+ )
+ }
+}
+
+impl convert::From<TableDescriptor> for RawTableDescriptor {
+ fn from(desc: TableDescriptor) -> Self {
+ RawTableDescriptor(desc.0.value)
+ }
+}
+
+/// Convert the kernel's generic memory range attributes to HW-specific attributes of the MMU.
+impl convert::From<AttributeFields>
+ for register::FieldValue<u64, STAGE1_PAGE_DESCRIPTOR::Register>
+{
+ fn from(attribute_fields: AttributeFields) -> Self {
+ // Memory attributes
+ let mut desc = match attribute_fields.mem_attributes {
+ MemAttributes::CacheableDRAM => {
+ STAGE1_PAGE_DESCRIPTOR::SH::InnerShareable
+ + STAGE1_PAGE_DESCRIPTOR::AttrIndx.val(mair::NORMAL)
+ }
+ MemAttributes::Device => {
+ STAGE1_PAGE_DESCRIPTOR::SH::OuterShareable
+ + STAGE1_PAGE_DESCRIPTOR::AttrIndx.val(mair::DEVICE)
+ }
+ };
+
+ // Access Permissions
+ desc += match attribute_fields.acc_perms {
+ AccessPermissions::ReadOnly => STAGE1_PAGE_DESCRIPTOR::AP::RO_EL1,
+ AccessPermissions::ReadWrite => STAGE1_PAGE_DESCRIPTOR::AP::RW_EL1,
+ };
+
+ // Execute Never
+ desc += if attribute_fields.execute_never {
+ STAGE1_PAGE_DESCRIPTOR::PXN::True
+ } else {
+ STAGE1_PAGE_DESCRIPTOR::PXN::False
+ };
+
+ desc
+ }
+}
+
+/// A page descriptor with 64 KiB aperture.
+///
+/// The output points to physical memory.
+struct PageDescriptor(register::FieldValue<u64, STAGE1_PAGE_DESCRIPTOR::Register>);
+
+impl PageDescriptor {
+ fn new(output_addr: usize, attribute_fields: AttributeFields) -> PageDescriptor {
+ let shifted = output_addr >> SIXTYFOUR_KIB_SHIFT;
+
+ PageDescriptor(
+ STAGE1_PAGE_DESCRIPTOR::VALID::True
+ + STAGE1_PAGE_DESCRIPTOR::AF::True
+ + attribute_fields.into()
+ + STAGE1_PAGE_DESCRIPTOR::TYPE::Table
+ + STAGE1_PAGE_DESCRIPTOR::OUTPUT_ADDR_64KiB.val(shifted as u64),
+ )
+ }
+}
+
+impl convert::From<PageDescriptor> for RawPageDescriptor {
+ fn from(desc: PageDescriptor) -> Self {
+ RawPageDescriptor(desc.0.value)
+ }
+}
+
+/// Constants for indexing the MAIR_EL1.
+#[allow(dead_code)]
+mod mair {
+ pub const DEVICE: u64 = 0;
+ pub const NORMAL: u64 = 1;
+}
+
+/// Setup function for the MAIR_EL1 register.
+fn set_up_mair() {
+ // Define the memory types being mapped.
+ MAIR_EL1.write(
+ // Attribute 1 - Cacheable normal DRAM
+ MAIR_EL1::Attr1_HIGH::Memory_OuterWriteBack_NonTransient_ReadAlloc_WriteAlloc
+ + MAIR_EL1::Attr1_LOW_MEMORY::InnerWriteBack_NonTransient_ReadAlloc_WriteAlloc
+
+ // Attribute 0 - Device
+ + MAIR_EL1::Attr0_HIGH::Device
+ + MAIR_EL1::Attr0_LOW_DEVICE::Device_nGnRE,
+ );
+}
+
+/// Compile the page tables from the `BSP`-supplied `virt_mem_layout()`.
+///
+/// # Safety
+///
+/// - User must ensure that the hardware supports the paremeters being set here.
+pub unsafe fn init() -> Result<(), &'static str> {
+ // Fail early if translation granule is not supported. Both RPis support it, though.
+ if !ID_AA64MMFR0_EL1.matches_all(ID_AA64MMFR0_EL1::TGran64::Supported) {
+ return Err("MMU does not support 64 KiB translation granule");
+ }
+
+ // Prepare the memory attribute indirection register.
+ set_up_mair();
+
+ // Iterate over all page table entries and fill them at once.
+ for (l2_nr, l2_entry) in TABLES.lvl2.iter_mut().enumerate() {
+ *l2_entry = TableDescriptor::new(TABLES.lvl3[l2_nr].base_addr_usize()).into();
+
+ for (l3_nr, l3_entry) in TABLES.lvl3[l2_nr].iter_mut().enumerate() {
+ let virt_addr = (l2_nr << FIVETWELVE_MIB_SHIFT) + (l3_nr << SIXTYFOUR_KIB_SHIFT);
+
+ let (output_addr, attribute_fields) =
+ match bsp::virt_mem_layout().get_virt_addr_properties(virt_addr) {
+ Err(string) => return Err(string),
+ Ok((a, b)) => (a, b),
+ };
+
+ *l3_entry = PageDescriptor::new(output_addr, attribute_fields).into();
+ }
+ }
+
+ // Set the "Translation Table Base Register".
+ TTBR0_EL1.set_baddr(TABLES.lvl2.base_addr_u64());
+
+ // Configure various settings of stage 1 of the EL1 translation regime.
+ let ips = ID_AA64MMFR0_EL1.read(ID_AA64MMFR0_EL1::PARange);
+ TCR_EL1.write(
+ TCR_EL1::TBI0::Ignored
+ + TCR_EL1::IPS.val(ips)
+ + TCR_EL1::TG0::KiB_64
+ + TCR_EL1::SH0::Inner
+ + TCR_EL1::ORGN0::WriteBack_ReadAlloc_WriteAlloc_Cacheable
+ + TCR_EL1::IRGN0::WriteBack_ReadAlloc_WriteAlloc_Cacheable
+ + TCR_EL1::EPD0::EnableTTBR0Walks
+ + TCR_EL1::T0SZ.val(32), // TTBR0 spans 4 GiB total.
+ );
+
+ // Switch the MMU on.
+ //
+ // First, force all previous changes to be seen before the MMU is enabled.
+ barrier::isb(barrier::SY);
+
+ // Enable the MMU and turn on data and instruction caching.
+ SCTLR_EL1.modify(SCTLR_EL1::M::Enable + SCTLR_EL1::C::Cacheable + SCTLR_EL1::I::Cacheable);
+
+ // Force MMU init to complete before next instruction
+ barrier::isb(barrier::SY);
+
+ Ok(())
+}
diff -uNr 10_privilege_level/src/arch/aarch64.rs 11_virtual_memory/src/arch/aarch64.rs
--- 10_privilege_level/src/arch/aarch64.rs
+++ 11_virtual_memory/src/arch/aarch64.rs
@@ -5,6 +5,7 @@
//! AArch64.
mod exception;
+pub mod mmu;
pub mod sync;
mod time;
diff -uNr 10_privilege_level/src/bsp/rpi/link.ld 11_virtual_memory/src/bsp/rpi/link.ld
--- 10_privilege_level/src/bsp/rpi/link.ld
+++ 11_virtual_memory/src/bsp/rpi/link.ld
@@ -8,6 +8,7 @@
/* Set current address to the value from which the RPi starts execution */
. = 0x80000;
+ __ro_start = .;
.text :
{
*(.text._start) *(.text*)
@@ -17,6 +18,8 @@
{
*(.rodata*)
}
+ . = ALIGN(65536); /* Fill up to 64 KiB */
+ __ro_end = .;
.data :
{
diff -uNr 10_privilege_level/src/bsp/rpi/memory_map.rs 11_virtual_memory/src/bsp/rpi/memory_map.rs
--- 10_privilege_level/src/bsp/rpi/memory_map.rs
+++ 11_virtual_memory/src/bsp/rpi/memory_map.rs
@@ -4,6 +4,14 @@
//! The board's memory map.
+#[cfg(feature = "bsp_rpi3")]
+#[rustfmt::skip]
+pub const END_INCLUSIVE: usize = 0x3FFF_FFFF;
+
+#[cfg(feature = "bsp_rpi4")]
+#[rustfmt::skip]
+pub const END_INCLUSIVE: usize = 0xFFFF_FFFF;
+
/// Physical devices.
#[rustfmt::skip]
pub mod mmio {
@@ -15,4 +23,5 @@
pub const GPIO_BASE: usize = BASE + 0x0020_0000;
pub const PL011_UART_BASE: usize = BASE + 0x0020_1000;
+ pub const END_INCLUSIVE: usize = super::END_INCLUSIVE;
}
diff -uNr 10_privilege_level/src/bsp/rpi/virt_mem_layout.rs 11_virtual_memory/src/bsp/rpi/virt_mem_layout.rs
--- 10_privilege_level/src/bsp/rpi/virt_mem_layout.rs
+++ 11_virtual_memory/src/bsp/rpi/virt_mem_layout.rs
@@ -0,0 +1,78 @@
+// SPDX-License-Identifier: MIT
+//
+// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
+
+//! The virtual memory layout.
+//!
+//! The layout must contain only special ranges, aka anything that is _not_ normal cacheable DRAM.
+//! It is agnostic of the paging granularity that the architecture's MMU will use.
+
+use super::memory_map;
+use crate::memory::*;
+use core::ops::RangeInclusive;
+
+pub const NUM_MEM_RANGES: usize = 3;
+
+pub static LAYOUT: KernelVirtualLayout<{ NUM_MEM_RANGES }> = KernelVirtualLayout::new(
+ memory_map::END_INCLUSIVE,
+ [
+ RangeDescriptor {
+ name: "Kernel code and RO data",
+ virtual_range: || {
+ // Using the linker script, we ensure that the RO area is consecutive and 4 KiB
+ // aligned, and we export the boundaries via symbols:
+ //
+ // [__ro_start, __ro_end)
+ extern "C" {
+ // The inclusive start of the read-only area, aka the address of the first
+ // byte of the area.
+ static __ro_start: u64;
+
+ // The exclusive end of the read-only area, aka the address of the first
+ // byte _after_ the RO area.
+ static __ro_end: u64;
+ }
+
+ unsafe {
+ // Notice the subtraction to turn the exclusive end into an inclusive end.
+ #[allow(clippy::range_minus_one)]
+ RangeInclusive::new(
+ &__ro_start as *const _ as usize,
+ &__ro_end as *const _ as usize - 1,
+ )
+ }
+ },
+ translation: Translation::Identity,
+ attribute_fields: AttributeFields {
+ mem_attributes: MemAttributes::CacheableDRAM,
+ acc_perms: AccessPermissions::ReadOnly,
+ execute_never: false,
+ },
+ },
+ RangeDescriptor {
+ name: "Remapped Device MMIO",
+ virtual_range: || {
+ // The last 64 KiB slot in the first 512 MiB
+ RangeInclusive::new(0x1FFF_0000, 0x1FFF_FFFF)
+ },
+ translation: Translation::Offset(memory_map::mmio::BASE + 0x20_0000),
+ attribute_fields: AttributeFields {
+ mem_attributes: MemAttributes::Device,
+ acc_perms: AccessPermissions::ReadWrite,
+ execute_never: true,
+ },
+ },
+ RangeDescriptor {
+ name: "Device MMIO",
+ virtual_range: || {
+ RangeInclusive::new(memory_map::mmio::BASE, memory_map::mmio::END_INCLUSIVE)
+ },
+ translation: Translation::Identity,
+ attribute_fields: AttributeFields {
+ mem_attributes: MemAttributes::Device,
+ acc_perms: AccessPermissions::ReadWrite,
+ execute_never: true,
+ },
+ },
+ ],
+);
diff -uNr 10_privilege_level/src/bsp/rpi.rs 11_virtual_memory/src/bsp/rpi.rs
--- 10_privilege_level/src/bsp/rpi.rs
+++ 11_virtual_memory/src/bsp/rpi.rs
@@ -5,9 +5,10 @@
//! Board Support Package for the Raspberry Pi.
mod memory_map;
+mod virt_mem_layout;
use super::driver;
-use crate::interface;
+use crate::{interface, memory::KernelVirtualLayout};
pub const BOOT_CORE_ID: u64 = 0;
pub const BOOT_CORE_STACK_START: u64 = 0x80_000;
@@ -56,3 +57,13 @@
// Configure PL011Uart's output pins.
GPIO.map_pl011_uart();
}
+
+/// Return the address space size in bytes.
+pub const fn addr_space_size() -> usize {
+ memory_map::END_INCLUSIVE + 1
+}
+
+/// Return a reference to the virtual memory layout.
+pub fn virt_mem_layout() -> &'static KernelVirtualLayout<{ virt_mem_layout::NUM_MEM_RANGES }> {
+ &virt_mem_layout::LAYOUT
+}
diff -uNr 10_privilege_level/src/bsp.rs 11_virtual_memory/src/bsp.rs
--- 10_privilege_level/src/bsp.rs
+++ 11_virtual_memory/src/bsp.rs
@@ -4,7 +4,7 @@
//! Conditional exporting of Board Support Packages.
-mod driver;
+pub mod driver;
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
mod rpi;
diff -uNr 10_privilege_level/src/main.rs 11_virtual_memory/src/main.rs
--- 10_privilege_level/src/main.rs
+++ 11_virtual_memory/src/main.rs
@@ -19,6 +19,8 @@
//! [Architecture-specific code]: arch/index.html
//! [`kernel::interface`]: interface/index.html
+#![allow(incomplete_features)]
+#![feature(const_generics)]
#![feature(format_args_nl)]
#![feature(panic_info_message)]
#![feature(trait_alias)]
@@ -36,6 +38,7 @@
mod bsp;
mod interface;
+mod memory;
mod panic_wait;
mod print;
@@ -48,6 +51,7 @@
/// - Only a single core must be active and running this function.
/// - The init calls in this function must appear in the correct order.
unsafe fn kernel_init() -> ! {
+ // Bring up device drivers first, so that eventual MMU errors can be printed.
for i in bsp::device_drivers().iter() {
if let Err(()) = i.init() {
// This message will only be readable if, at the time of failure, the return value of
@@ -58,6 +62,13 @@
bsp::post_driver_init();
+ println!("Booting on: {}", bsp::board_name());
+
+ if let Err(string) = arch::mmu::init() {
+ panic!("MMU: {}", string);
+ }
+ println!("MMU online");
+
// Transition from unsafe to safe.
kernel_main()
}
@@ -67,7 +78,7 @@
use core::time::Duration;
use interface::{console::All, time::Timer};
- println!("Booting on: {}", bsp::board_name());
+ bsp::virt_mem_layout().print_layout();
println!(
"Current privilege level: {}",
@@ -89,6 +100,13 @@
println!("Timer test, spinning for 1 second");
arch::timer().spin_for(Duration::from_secs(1));
+ let remapped_uart = unsafe { bsp::driver::PL011Uart::new(0x1FFF_1000) };
+ writeln!(
+ remapped_uart,
+ "[ !!! ] Writing through the remapped UART at 0x1FFF_1000"
+ )
+ .unwrap();
+
println!("Echoing input now");
loop {
let c = bsp::console().read_char();
diff -uNr 10_privilege_level/src/memory.rs 11_virtual_memory/src/memory.rs
--- 10_privilege_level/src/memory.rs
+++ 11_virtual_memory/src/memory.rs
@@ -0,0 +1,149 @@
+// SPDX-License-Identifier: MIT
+//
+// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
+
+//! Memory Management.
+
+use core::{fmt, ops::RangeInclusive};
+
+#[derive(Copy, Clone)]
+pub enum Translation {
+ Identity,
+ Offset(usize),
+}
+
+#[derive(Copy, Clone)]
+pub enum MemAttributes {
+ CacheableDRAM,
+ Device,
+}
+
+#[derive(Copy, Clone)]
+pub enum AccessPermissions {
+ ReadOnly,
+ ReadWrite,
+}
+
+#[derive(Copy, Clone)]
+pub struct AttributeFields {
+ pub mem_attributes: MemAttributes,
+ pub acc_perms: AccessPermissions,
+ pub execute_never: bool,
+}
+
+impl Default for AttributeFields {
+ fn default() -> AttributeFields {
+ AttributeFields {
+ mem_attributes: MemAttributes::CacheableDRAM,
+ acc_perms: AccessPermissions::ReadWrite,
+ execute_never: true,
+ }
+ }
+}
+
+/// An architecture agnostic descriptor for a memory range.
+pub struct RangeDescriptor {
+ pub name: &'static str,
+ pub virtual_range: fn() -> RangeInclusive<usize>,
+ pub translation: Translation,
+ pub attribute_fields: AttributeFields,
+}
+
+/// Human-readable output of a RangeDescriptor.
+impl fmt::Display for RangeDescriptor {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ // Call the function to which self.range points, and dereference the result, which causes
+ // Rust to copy the value.
+ let start = *(self.virtual_range)().start();
+ let end = *(self.virtual_range)().end();
+ let size = end - start + 1;
+
+ // log2(1024).
+ const KIB_RSHIFT: u32 = 10;
+
+ // log2(1024 * 1024).
+ const MIB_RSHIFT: u32 = 20;
+
+ let (size, unit) = if (size >> MIB_RSHIFT) > 0 {
+ (size >> MIB_RSHIFT, "MiB")
+ } else if (size >> KIB_RSHIFT) > 0 {
+ (size >> KIB_RSHIFT, "KiB")
+ } else {
+ (size, "Byte")
+ };
+
+ let attr = match self.attribute_fields.mem_attributes {
+ MemAttributes::CacheableDRAM => "C",
+ MemAttributes::Device => "Dev",
+ };
+
+ let acc_p = match self.attribute_fields.acc_perms {
+ AccessPermissions::ReadOnly => "RO",
+ AccessPermissions::ReadWrite => "RW",
+ };
+
+ let xn = if self.attribute_fields.execute_never {
+ "PXN"
+ } else {
+ "PX"
+ };
+
+ write!(
+ f,
+ " {:#010X} - {:#010X} | {: >3} {} | {: <3} {} {: <3} | {}",
+ start, end, size, unit, attr, acc_p, xn, self.name
+ )
+ }
+}
+
+/// Type for expressing the kernel's virtual memory layout.
+pub struct KernelVirtualLayout<const NUM_SPECIAL_RANGES: usize> {
+ max_virt_addr_inclusive: usize,
+ inner: [RangeDescriptor; NUM_SPECIAL_RANGES],
+}
+
+impl<const NUM_SPECIAL_RANGES: usize> KernelVirtualLayout<{ NUM_SPECIAL_RANGES }> {
+ pub const fn new(max: usize, layout: [RangeDescriptor; NUM_SPECIAL_RANGES]) -> Self {
+ Self {
+ max_virt_addr_inclusive: max,
+ inner: layout,
+ }
+ }
+
+ /// For a virtual address, find and return the output address and corresponding attributes.
+ ///
+ /// If the address is not found in `inner`, return an identity mapped default with normal
+ /// cacheable DRAM attributes.
+ pub fn get_virt_addr_properties(
+ &self,
+ virt_addr: usize,
+ ) -> Result<(usize, AttributeFields), &'static str> {
+ if virt_addr > self.max_virt_addr_inclusive {
+ return Err("Address out of range");
+ }
+
+ for i in self.inner.iter() {
+ if (i.virtual_range)().contains(&virt_addr) {
+ let output_addr = match i.translation {
+ Translation::Identity => virt_addr,
+ Translation::Offset(a) => a + (virt_addr - (i.virtual_range)().start()),
+ };
+
+ return Ok((output_addr, i.attribute_fields));
+ }
+ }
+
+ Ok((virt_addr, AttributeFields::default()))
+ }
+
+ /// Print the memory layout.
+ pub fn print_layout(&self) {
+ use crate::println;
+
+ println!("Special memory regions:");
+
+ for i in self.inner.iter() {
+ println!("{}", i);
+ }
+ }
+}
```

Binary file not shown.

Binary file not shown.

@ -0,0 +1,11 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Conditional exporting of processor architecture code.
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
mod aarch64;
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
pub use aarch64::*;

@ -0,0 +1,139 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! AArch64.
mod exception;
pub mod mmu;
pub mod sync;
mod time;
use crate::{bsp, interface};
use cortex_a::{asm, regs::*};
/// The entry of the `kernel` binary.
///
/// The function must be named `_start`, because the linker is looking for this exact name.
///
/// # Safety
///
/// - Linker script must ensure to place this function at `0x80_000`.
#[no_mangle]
pub unsafe extern "C" fn _start() -> ! {
const CORE_MASK: u64 = 0x3;
// Expect the boot core to start in EL2.
if (bsp::BOOT_CORE_ID == MPIDR_EL1.get() & CORE_MASK)
&& (CurrentEL.get() == CurrentEL::EL::EL2.value)
{
el2_to_el1_transition()
} else {
// If not core0, infinitely wait for events.
wait_forever()
}
}
/// Transition from EL2 to EL1.
///
/// # Safety
///
/// - The HW state of EL1 must be prepared in a sound way.
/// - Exception return from EL2 must must continue execution in EL1 with ´runtime_init::init()`.
#[inline(always)]
unsafe fn el2_to_el1_transition() -> ! {
// Enable timer counter registers for EL1.
CNTHCTL_EL2.write(CNTHCTL_EL2::EL1PCEN::SET + CNTHCTL_EL2::EL1PCTEN::SET);
// No offset for reading the counters.
CNTVOFF_EL2.set(0);
// Set EL1 execution state to AArch64.
HCR_EL2.write(HCR_EL2::RW::EL1IsAarch64);
// Set up a simulated exception return.
//
// First, fake a saved program status, where all interrupts were masked and SP_EL1 was used as a
// stack pointer.
SPSR_EL2.write(
SPSR_EL2::D::Masked
+ SPSR_EL2::A::Masked
+ SPSR_EL2::I::Masked
+ SPSR_EL2::F::Masked
+ SPSR_EL2::M::EL1h,
);
// Second, let the link register point to init().
ELR_EL2.set(crate::runtime_init::init as *const () as u64);
// Set up SP_EL1 (stack pointer), which will be used by EL1 once we "return" to it.
SP_EL1.set(bsp::BOOT_CORE_STACK_START);
// Use `eret` to "return" to EL1. This will result in execution of `reset()` in EL1.
asm::eret()
}
//--------------------------------------------------------------------------------------------------
// Global instances
//--------------------------------------------------------------------------------------------------
static TIMER: time::Timer = time::Timer;
//--------------------------------------------------------------------------------------------------
// Implementation of the kernel's architecture abstraction code
//--------------------------------------------------------------------------------------------------
pub use asm::nop;
/// Spin for `n` cycles.
pub fn spin_for_cycles(n: usize) {
for _ in 0..n {
asm::nop();
}
}
/// Return a reference to a `interface::time::TimeKeeper` implementation.
pub fn timer() -> &'static impl interface::time::Timer {
&TIMER
}
/// Pause execution on the calling CPU core.
#[inline(always)]
pub fn wait_forever() -> ! {
loop {
asm::wfe()
}
}
/// Information about the HW state.
pub mod state {
use cortex_a::regs::*;
/// The current privilege level.
pub fn current_privilege_level() -> &'static str {
let el = CurrentEL.read_as_enum(CurrentEL::EL);
match el {
Some(CurrentEL::EL::Value::EL2) => "EL2",
Some(CurrentEL::EL::Value::EL1) => "EL1",
_ => "Unknown",
}
}
#[rustfmt::skip]
pub fn print_exception_state() {
use super::{
exception,
exception::{Debug, SError, FIQ, IRQ},
};
use crate::println;
let to_mask_str = |x: bool| -> &'static str {
if x { "Masked" } else { "Unmasked" }
};
println!(" Debug: {}", to_mask_str(exception::is_masked::<Debug>()));
println!(" SError: {}", to_mask_str(exception::is_masked::<SError>()));
println!(" IRQ: {}", to_mask_str(exception::is_masked::<IRQ>()));
println!(" FIQ: {}", to_mask_str(exception::is_masked::<FIQ>()));
}
}

@ -0,0 +1,44 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Exception handling.
use cortex_a::regs::*;
pub trait DaifField {
fn daif_field() -> register::Field<u32, DAIF::Register>;
}
pub struct Debug;
pub struct SError;
pub struct IRQ;
pub struct FIQ;
impl DaifField for Debug {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::D
}
}
impl DaifField for SError {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::A
}
}
impl DaifField for IRQ {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::I
}
}
impl DaifField for FIQ {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::F
}
}
pub fn is_masked<T: DaifField>() -> bool {
DAIF.is_set(T::daif_field())
}

@ -0,0 +1,292 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Memory Management Unit.
//!
//! Static page tables, compiled on boot; Everything 64 KiB granule.
use crate::{
bsp,
memory::{AccessPermissions, AttributeFields, MemAttributes},
};
use core::convert;
use cortex_a::{barrier, regs::*};
use register::register_bitfields;
// A table descriptor, as per AArch64 Reference Manual Figure D4-15.
register_bitfields! {u64,
STAGE1_TABLE_DESCRIPTOR [
/// Physical address of the next page table.
NEXT_LEVEL_TABLE_ADDR_64KiB OFFSET(16) NUMBITS(32) [], // [47:16]
TYPE OFFSET(1) NUMBITS(1) [
Block = 0,
Table = 1
],
VALID OFFSET(0) NUMBITS(1) [
False = 0,
True = 1
]
]
}
// A level 3 page descriptor, as per AArch64 Reference Manual Figure D4-17.
register_bitfields! {u64,
STAGE1_PAGE_DESCRIPTOR [
/// Privileged execute-never
PXN OFFSET(53) NUMBITS(1) [
False = 0,
True = 1
],
/// Physical address of the next page table (lvl2) or the page descriptor (lvl3).
OUTPUT_ADDR_64KiB OFFSET(16) NUMBITS(32) [], // [47:16]
/// Access flag
AF OFFSET(10) NUMBITS(1) [
False = 0,
True = 1
],
/// Shareability field
SH OFFSET(8) NUMBITS(2) [
OuterShareable = 0b10,
InnerShareable = 0b11
],
/// Access Permissions
AP OFFSET(6) NUMBITS(2) [
RW_EL1 = 0b00,
RW_EL1_EL0 = 0b01,
RO_EL1 = 0b10,
RO_EL1_EL0 = 0b11
],
/// Memory attributes index into the MAIR_EL1 register
AttrIndx OFFSET(2) NUMBITS(3) [],
TYPE OFFSET(1) NUMBITS(1) [
Block = 0,
Table = 1
],
VALID OFFSET(0) NUMBITS(1) [
False = 0,
True = 1
]
]
}
// Two newtypes for added type safety, so that you cannot accidentally place a TableDescriptor into
// a PageDescriptor slot in `struct PageTables`, and vice versa.
#[derive(Copy, Clone)]
#[repr(transparent)]
struct RawTableDescriptor(u64);
#[derive(Copy, Clone)]
#[repr(transparent)]
struct RawPageDescriptor(u64);
const SIXTYFOUR_KIB_SHIFT: usize = 16; // log2(64 * 1024)
const FIVETWELVE_MIB_SHIFT: usize = 29; // log2(512 * 1024 * 1024)
/// Big monolithic struct for storing the page tables. Individual levels must be 64 KiB aligned,
/// hence the "reverse" order of appearance.
#[repr(C)]
#[repr(align(65536))]
struct PageTables<const N: usize> {
// Page descriptors, covering 64 KiB windows per entry.
lvl3: [[RawPageDescriptor; 8192]; N],
// Table descriptors, covering 512 MiB windows.
lvl2: [RawTableDescriptor; N],
}
/// Usually evaluates to 1 GiB for RPi3 and 4 GiB for RPi 4.
const ENTRIES_512_MIB: usize = bsp::addr_space_size() >> FIVETWELVE_MIB_SHIFT;
/// The page tables.
///
/// Supposed to land in `.bss`. Therefore, ensure that they boil down to all "0" entries.
static mut TABLES: PageTables<{ ENTRIES_512_MIB }> = PageTables {
lvl3: [[RawPageDescriptor(0); 8192]; ENTRIES_512_MIB],
lvl2: [RawTableDescriptor(0); ENTRIES_512_MIB],
};
trait BaseAddr {
fn base_addr_u64(&self) -> u64;
fn base_addr_usize(&self) -> usize;
}
impl<T, const N: usize> BaseAddr for [T; N] {
fn base_addr_u64(&self) -> u64 {
self as *const T as u64
}
fn base_addr_usize(&self) -> usize {
self as *const T as usize
}
}
/// A descriptor pointing to the next page table.
struct TableDescriptor(register::FieldValue<u64, STAGE1_TABLE_DESCRIPTOR::Register>);
impl TableDescriptor {
fn new(next_lvl_table_addr: usize) -> TableDescriptor {
let shifted = next_lvl_table_addr >> SIXTYFOUR_KIB_SHIFT;
TableDescriptor(
STAGE1_TABLE_DESCRIPTOR::VALID::True
+ STAGE1_TABLE_DESCRIPTOR::TYPE::Table
+ STAGE1_TABLE_DESCRIPTOR::NEXT_LEVEL_TABLE_ADDR_64KiB.val(shifted as u64),
)
}
}
impl convert::From<TableDescriptor> for RawTableDescriptor {
fn from(desc: TableDescriptor) -> Self {
RawTableDescriptor(desc.0.value)
}
}
/// Convert the kernel's generic memory range attributes to HW-specific attributes of the MMU.
impl convert::From<AttributeFields>
for register::FieldValue<u64, STAGE1_PAGE_DESCRIPTOR::Register>
{
fn from(attribute_fields: AttributeFields) -> Self {
// Memory attributes
let mut desc = match attribute_fields.mem_attributes {
MemAttributes::CacheableDRAM => {
STAGE1_PAGE_DESCRIPTOR::SH::InnerShareable
+ STAGE1_PAGE_DESCRIPTOR::AttrIndx.val(mair::NORMAL)
}
MemAttributes::Device => {
STAGE1_PAGE_DESCRIPTOR::SH::OuterShareable
+ STAGE1_PAGE_DESCRIPTOR::AttrIndx.val(mair::DEVICE)
}
};
// Access Permissions
desc += match attribute_fields.acc_perms {
AccessPermissions::ReadOnly => STAGE1_PAGE_DESCRIPTOR::AP::RO_EL1,
AccessPermissions::ReadWrite => STAGE1_PAGE_DESCRIPTOR::AP::RW_EL1,
};
// Execute Never
desc += if attribute_fields.execute_never {
STAGE1_PAGE_DESCRIPTOR::PXN::True
} else {
STAGE1_PAGE_DESCRIPTOR::PXN::False
};
desc
}
}
/// A page descriptor with 64 KiB aperture.
///
/// The output points to physical memory.
struct PageDescriptor(register::FieldValue<u64, STAGE1_PAGE_DESCRIPTOR::Register>);
impl PageDescriptor {
fn new(output_addr: usize, attribute_fields: AttributeFields) -> PageDescriptor {
let shifted = output_addr >> SIXTYFOUR_KIB_SHIFT;
PageDescriptor(
STAGE1_PAGE_DESCRIPTOR::VALID::True
+ STAGE1_PAGE_DESCRIPTOR::AF::True
+ attribute_fields.into()
+ STAGE1_PAGE_DESCRIPTOR::TYPE::Table
+ STAGE1_PAGE_DESCRIPTOR::OUTPUT_ADDR_64KiB.val(shifted as u64),
)
}
}
impl convert::From<PageDescriptor> for RawPageDescriptor {
fn from(desc: PageDescriptor) -> Self {
RawPageDescriptor(desc.0.value)
}
}
/// Constants for indexing the MAIR_EL1.
#[allow(dead_code)]
mod mair {
pub const DEVICE: u64 = 0;
pub const NORMAL: u64 = 1;
}
/// Setup function for the MAIR_EL1 register.
fn set_up_mair() {
// Define the memory types being mapped.
MAIR_EL1.write(
// Attribute 1 - Cacheable normal DRAM
MAIR_EL1::Attr1_HIGH::Memory_OuterWriteBack_NonTransient_ReadAlloc_WriteAlloc
+ MAIR_EL1::Attr1_LOW_MEMORY::InnerWriteBack_NonTransient_ReadAlloc_WriteAlloc
// Attribute 0 - Device
+ MAIR_EL1::Attr0_HIGH::Device
+ MAIR_EL1::Attr0_LOW_DEVICE::Device_nGnRE,
);
}
/// Compile the page tables from the `BSP`-supplied `virt_mem_layout()`.
///
/// # Safety
///
/// - User must ensure that the hardware supports the paremeters being set here.
pub unsafe fn init() -> Result<(), &'static str> {
// Fail early if translation granule is not supported. Both RPis support it, though.
if !ID_AA64MMFR0_EL1.matches_all(ID_AA64MMFR0_EL1::TGran64::Supported) {
return Err("MMU does not support 64 KiB translation granule");
}
// Prepare the memory attribute indirection register.
set_up_mair();
// Iterate over all page table entries and fill them at once.
for (l2_nr, l2_entry) in TABLES.lvl2.iter_mut().enumerate() {
*l2_entry = TableDescriptor::new(TABLES.lvl3[l2_nr].base_addr_usize()).into();
for (l3_nr, l3_entry) in TABLES.lvl3[l2_nr].iter_mut().enumerate() {
let virt_addr = (l2_nr << FIVETWELVE_MIB_SHIFT) + (l3_nr << SIXTYFOUR_KIB_SHIFT);
let (output_addr, attribute_fields) =
match bsp::virt_mem_layout().get_virt_addr_properties(virt_addr) {
Err(string) => return Err(string),
Ok((a, b)) => (a, b),
};
*l3_entry = PageDescriptor::new(output_addr, attribute_fields).into();
}
}
// Set the "Translation Table Base Register".
TTBR0_EL1.set_baddr(TABLES.lvl2.base_addr_u64());
// Configure various settings of stage 1 of the EL1 translation regime.
let ips = ID_AA64MMFR0_EL1.read(ID_AA64MMFR0_EL1::PARange);
TCR_EL1.write(
TCR_EL1::TBI0::Ignored
+ TCR_EL1::IPS.val(ips)
+ TCR_EL1::TG0::KiB_64
+ TCR_EL1::SH0::Inner
+ TCR_EL1::ORGN0::WriteBack_ReadAlloc_WriteAlloc_Cacheable
+ TCR_EL1::IRGN0::WriteBack_ReadAlloc_WriteAlloc_Cacheable
+ TCR_EL1::EPD0::EnableTTBR0Walks
+ TCR_EL1::T0SZ.val(32), // TTBR0 spans 4 GiB total.
);
// Switch the MMU on.
//
// First, force all previous changes to be seen before the MMU is enabled.
barrier::isb(barrier::SY);
// Enable the MMU and turn on data and instruction caching.
SCTLR_EL1.modify(SCTLR_EL1::M::Enable + SCTLR_EL1::C::Cacheable + SCTLR_EL1::I::Cacheable);
// Force MMU init to complete before next instruction
barrier::isb(barrier::SY);
Ok(())
}

@ -0,0 +1,44 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Synchronization primitives.
use crate::interface;
use core::cell::UnsafeCell;
/// A pseudo-lock for teaching purposes.
///
/// Used to introduce [interior mutability].
///
/// In contrast to a real Mutex implementation, does not protect against concurrent access to the
/// contained data. This part is preserved for later lessons.
///
/// The lock will only be used as long as it is safe to do so, i.e. as long as the kernel is
/// executing single-threaded, aka only running on a single core with interrupts disabled.
///
/// [interior mutability]: https://doc.rust-lang.org/std/cell/index.html
pub struct NullLock<T: ?Sized> {
data: UnsafeCell<T>,
}
unsafe impl<T: ?Sized + Send> Send for NullLock<T> {}
unsafe impl<T: ?Sized + Send> Sync for NullLock<T> {}
impl<T> NullLock<T> {
pub const fn new(data: T) -> NullLock<T> {
NullLock {
data: UnsafeCell::new(data),
}
}
}
impl<T> interface::sync::Mutex for &NullLock<T> {
type Data = T;
fn lock<R>(&mut self, f: impl FnOnce(&mut Self::Data) -> R) -> R {
// In a real lock, there would be code encapsulating this line that ensures that this
// mutable reference will ever only be given out once at a time.
f(unsafe { &mut *self.data.get() })
}
}

@ -0,0 +1,77 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Timer primitives.
use crate::{interface, warn};
use core::time::Duration;
use cortex_a::regs::*;
const NS_PER_S: u64 = 1_000_000_000;
pub struct Timer;
impl interface::time::Timer for Timer {
fn resolution(&self) -> Duration {
Duration::from_nanos(NS_PER_S / (CNTFRQ_EL0.get() as u64))
}
fn uptime(&self) -> Duration {
let frq: u64 = CNTFRQ_EL0.get() as u64;
let current_count: u64 = CNTPCT_EL0.get() * NS_PER_S;
Duration::from_nanos(current_count / frq)
}
fn spin_for(&self, duration: Duration) {
// Instantly return on zero.
if duration.as_nanos() == 0 {
return;
}
// Calculate the register compare value.
let frq = CNTFRQ_EL0.get() as u64;
let x = match frq.checked_mul(duration.as_nanos() as u64) {
None => {
warn!("Spin duration too long, skipping");
return;
}
Some(val) => val,
};
let tval = x / NS_PER_S;
// Check if it is within supported bounds.
let warn: Option<&str> = if tval == 0 {
Some("smaller")
} else if tval > u32::max_value().into() {
Some("bigger")
} else {
None
};
if let Some(w) = warn {
warn!(
"Spin duration {} than architecturally supported, skipping",
w
);
return;
}
// Set the compare value register.
CNTP_TVAL_EL0.set(tval as u32);
// Kick off the counting. // Disable timer interrupt.
CNTP_CTL_EL0.modify(CNTP_CTL_EL0::ENABLE::SET + CNTP_CTL_EL0::IMASK::SET);
loop {
// ISTATUS will be '1' when cval ticks have passed. Busy-check it.
if CNTP_CTL_EL0.is_set(CNTP_CTL_EL0::ISTATUS) {
break;
}
}
// Disable counting again.
CNTP_CTL_EL0.modify(CNTP_CTL_EL0::ENABLE::CLEAR);
}
}

@ -0,0 +1,13 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Conditional exporting of Board Support Packages.
pub mod driver;
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
mod rpi;
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
pub use rpi::*;

@ -0,0 +1,11 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Drivers.
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
mod bcm;
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
pub use bcm::*;

@ -0,0 +1,11 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! BCM driver top level.
mod bcm2xxx_gpio;
mod bcm2xxx_pl011_uart;
pub use bcm2xxx_gpio::GPIO;
pub use bcm2xxx_pl011_uart::PL011Uart;

@ -0,0 +1,157 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! GPIO driver.
use crate::{arch, arch::sync::NullLock, interface};
use core::ops;
use register::{mmio::ReadWrite, register_bitfields};
// GPIO registers.
//
// Descriptions taken from
// https://github.com/raspberrypi/documentation/files/1888662/BCM2837-ARM-Peripherals.-.Revised.-.V2-1.pdf
register_bitfields! {
u32,
/// GPIO Function Select 1
GPFSEL1 [
/// Pin 15
FSEL15 OFFSET(15) NUMBITS(3) [
Input = 0b000,
Output = 0b001,
AltFunc0 = 0b100 // PL011 UART RX
],
/// Pin 14
FSEL14 OFFSET(12) NUMBITS(3) [
Input = 0b000,
Output = 0b001,
AltFunc0 = 0b100 // PL011 UART TX
]
],
/// GPIO Pull-up/down Clock Register 0
GPPUDCLK0 [
/// Pin 15
PUDCLK15 OFFSET(15) NUMBITS(1) [
NoEffect = 0,
AssertClock = 1
],
/// Pin 14
PUDCLK14 OFFSET(14) NUMBITS(1) [
NoEffect = 0,
AssertClock = 1
]
]
}
#[allow(non_snake_case)]
#[repr(C)]
pub struct RegisterBlock {
pub GPFSEL0: ReadWrite<u32>, // 0x00
pub GPFSEL1: ReadWrite<u32, GPFSEL1::Register>, // 0x04
pub GPFSEL2: ReadWrite<u32>, // 0x08
pub GPFSEL3: ReadWrite<u32>, // 0x0C
pub GPFSEL4: ReadWrite<u32>, // 0x10
pub GPFSEL5: ReadWrite<u32>, // 0x14
__reserved_0: u32, // 0x18
GPSET0: ReadWrite<u32>, // 0x1C
GPSET1: ReadWrite<u32>, // 0x20
__reserved_1: u32, //
GPCLR0: ReadWrite<u32>, // 0x28
__reserved_2: [u32; 2], //
GPLEV0: ReadWrite<u32>, // 0x34
GPLEV1: ReadWrite<u32>, // 0x38
__reserved_3: u32, //
GPEDS0: ReadWrite<u32>, // 0x40
GPEDS1: ReadWrite<u32>, // 0x44
__reserved_4: [u32; 7], //
GPHEN0: ReadWrite<u32>, // 0x64
GPHEN1: ReadWrite<u32>, // 0x68
__reserved_5: [u32; 10], //
pub GPPUD: ReadWrite<u32>, // 0x94
pub GPPUDCLK0: ReadWrite<u32, GPPUDCLK0::Register>, // 0x98
pub GPPUDCLK1: ReadWrite<u32>, // 0x9C
}
/// The driver's private data.
struct GPIOInner {
base_addr: usize,
}
/// Deref to RegisterBlock.
impl ops::Deref for GPIOInner {
type Target = RegisterBlock;
fn deref(&self) -> &Self::Target {
unsafe { &*self.ptr() }
}
}
impl GPIOInner {
const fn new(base_addr: usize) -> GPIOInner {
GPIOInner { base_addr }
}
/// Return a pointer to the register block.
fn ptr(&self) -> *const RegisterBlock {
self.base_addr as *const _
}
}
//--------------------------------------------------------------------------------------------------
// BSP-public
//--------------------------------------------------------------------------------------------------
use interface::sync::Mutex;
/// The driver's main struct.
pub struct GPIO {
inner: NullLock<GPIOInner>,
}
impl GPIO {
pub const unsafe fn new(base_addr: usize) -> GPIO {
GPIO {
inner: NullLock::new(GPIOInner::new(base_addr)),
}
}
/// Map PL011 UART as standard output.
///
/// TX to pin 14
/// RX to pin 15
pub fn map_pl011_uart(&self) {
let mut r = &self.inner;
r.lock(|inner| {
// Map to pins.
inner
.GPFSEL1
.modify(GPFSEL1::FSEL14::AltFunc0 + GPFSEL1::FSEL15::AltFunc0);
// Enable pins 14 and 15.
inner.GPPUD.set(0);
arch::spin_for_cycles(150);
inner
.GPPUDCLK0
.write(GPPUDCLK0::PUDCLK14::AssertClock + GPPUDCLK0::PUDCLK15::AssertClock);
arch::spin_for_cycles(150);
inner.GPPUDCLK0.set(0);
})
}
}
//--------------------------------------------------------------------------------------------------
// OS interface implementations
//--------------------------------------------------------------------------------------------------
impl interface::driver::DeviceDriver for GPIO {
fn compatible(&self) -> &str {
"GPIO"
}
}

@ -0,0 +1,332 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! PL011 UART driver.
use crate::{arch, arch::sync::NullLock, interface};
use core::{fmt, ops};
use register::{mmio::*, register_bitfields};
// PL011 UART registers.
//
// Descriptions taken from
// https://github.com/raspberrypi/documentation/files/1888662/BCM2837-ARM-Peripherals.-.Revised.-.V2-1.pdf
register_bitfields! {
u32,
/// Flag Register
FR [
/// Transmit FIFO empty. The meaning of this bit depends on the state of the FEN bit in the
/// Line Control Register, UARTLCR_ LCRH.
///
/// If the FIFO is disabled, this bit is set when the transmit holding register is empty. If
/// the FIFO is enabled, the TXFE bit is set when the transmit FIFO is empty. This bit does
/// not indicate if there is data in the transmit shift register.
TXFE OFFSET(7) NUMBITS(1) [],
/// Transmit FIFO full. The meaning of this bit depends on the state of the FEN bit in the
/// UARTLCR_ LCRH Register.
///
/// If the FIFO is disabled, this bit is set when the transmit holding register is full. If
/// the FIFO is enabled, the TXFF bit is set when the transmit FIFO is full.
TXFF OFFSET(5) NUMBITS(1) [],
/// Receive FIFO empty. The meaning of this bit depends on the state of the FEN bit in the
/// UARTLCR_H Register.
///
/// If the FIFO is disabled, this bit is set when the receive holding register is empty. If
/// the FIFO is enabled, the RXFE bit is set when the receive FIFO is empty.
RXFE OFFSET(4) NUMBITS(1) []
],
/// Integer Baud rate divisor
IBRD [
/// Integer Baud rate divisor
IBRD OFFSET(0) NUMBITS(16) []
],
/// Fractional Baud rate divisor
FBRD [
/// Fractional Baud rate divisor
FBRD OFFSET(0) NUMBITS(6) []
],
/// Line Control register
LCRH [
/// Word length. These bits indicate the number of data bits transmitted or received in a
/// frame.
WLEN OFFSET(5) NUMBITS(2) [
FiveBit = 0b00,
SixBit = 0b01,
SevenBit = 0b10,
EightBit = 0b11
],
/// Enable FIFOs:
///
/// 0 = FIFOs are disabled (character mode) that is, the FIFOs become 1-byte-deep holding
/// registers
///
/// 1 = transmit and receive FIFO buffers are enabled (FIFO mode).
FEN OFFSET(4) NUMBITS(1) [
FifosDisabled = 0,
FifosEnabled = 1
]
],
/// Control Register
CR [
/// Receive enable. If this bit is set to 1, the receive section of the UART is enabled.
/// Data reception occurs for UART signals. When the UART is disabled in the middle of
/// reception, it completes the current character before stopping.
RXE OFFSET(9) NUMBITS(1) [
Disabled = 0,
Enabled = 1
],
/// Transmit enable. If this bit is set to 1, the transmit section of the UART is enabled.
/// Data transmission occurs for UART signals. When the UART is disabled in the middle of
/// transmission, it completes the current character before stopping.
TXE OFFSET(8) NUMBITS(1) [
Disabled = 0,
Enabled = 1
],
/// UART enable
UARTEN OFFSET(0) NUMBITS(1) [
/// If the UART is disabled in the middle of transmission or reception, it completes the
/// current character before stopping.
Disabled = 0,
Enabled = 1
]
],
/// Interrupt Clear Register
ICR [
/// Meta field for all pending interrupts
ALL OFFSET(0) NUMBITS(11) []
]
}
#[allow(non_snake_case)]
#[repr(C)]
pub struct RegisterBlock {
DR: ReadWrite<u32>, // 0x00
__reserved_0: [u32; 5], // 0x04
FR: ReadOnly<u32, FR::Register>, // 0x18
__reserved_1: [u32; 2], // 0x1c
IBRD: WriteOnly<u32, IBRD::Register>, // 0x24
FBRD: WriteOnly<u32, FBRD::Register>, // 0x28
LCRH: WriteOnly<u32, LCRH::Register>, // 0x2C
CR: WriteOnly<u32, CR::Register>, // 0x30
__reserved_2: [u32; 4], // 0x34
ICR: WriteOnly<u32, ICR::Register>, // 0x44
}
/// The driver's mutex protected part.
struct PL011UartInner {
base_addr: usize,
chars_written: usize,
}
/// Deref to RegisterBlock.
///
/// Allows writing
/// ```
/// self.DR.read()
/// ```
/// instead of something along the lines of
/// ```
/// unsafe { (*PL011UartInner::ptr()).DR.read() }
/// ```
impl ops::Deref for PL011UartInner {
type Target = RegisterBlock;
fn deref(&self) -> &Self::Target {
unsafe { &*self.ptr() }
}
}
impl PL011UartInner {
const fn new(base_addr: usize) -> PL011UartInner {
PL011UartInner {
base_addr,
chars_written: 0,
}
}
/// Return a pointer to the register block.
fn ptr(&self) -> *const RegisterBlock {
self.base_addr as *const _
}
/// Send a character.
fn write_char(&mut self, c: char) {
// Wait until we can send.
loop {
if !self.FR.is_set(FR::TXFF) {
break;
}
arch::nop();
}
// Write the character to the buffer.
self.DR.set(c as u32);
}
}
/// Implementing `core::fmt::Write` enables usage of the `format_args!` macros, which in turn are
/// used to implement the `kernel`'s `print!` and `println!` macros. By implementing `write_str()`,
/// we get `write_fmt()` automatically.
///
/// The function takes an `&mut self`, so it must be implemented for the inner struct.
///
/// See [`src/print.rs`].
///
/// [`src/print.rs`]: ../../print/index.html
impl fmt::Write for PL011UartInner {
fn write_str(&mut self, s: &str) -> fmt::Result {
for c in s.chars() {
// Convert newline to carrige return + newline.
if c == '\n' {
self.write_char('\r')
}
self.write_char(c);
}
self.chars_written += s.len();
Ok(())
}
}
//--------------------------------------------------------------------------------------------------
// BSP-public
//--------------------------------------------------------------------------------------------------
/// The driver's main struct.
pub struct PL011Uart {
inner: NullLock<PL011UartInner>,
}
impl PL011Uart {
/// # Safety
///
/// The user must ensure to provide the correct `base_addr`.
pub const unsafe fn new(base_addr: usize) -> PL011Uart {
PL011Uart {
inner: NullLock::new(PL011UartInner::new(base_addr)),
}
}
}
//--------------------------------------------------------------------------------------------------
// OS interface implementations
//--------------------------------------------------------------------------------------------------
use interface::sync::Mutex;
impl interface::driver::DeviceDriver for PL011Uart {
fn compatible(&self) -> &str {
"PL011Uart"
}
/// Set up baud rate and characteristics
///
/// Results in 8N1 and 115200 baud (if the clk has been previously set to 4 MHz by the
/// firmware).
fn init(&self) -> interface::driver::Result {
let mut r = &self.inner;
r.lock(|inner| {
// Turn it off temporarily.
inner.CR.set(0);
inner.ICR.write(ICR::ALL::CLEAR);
inner.IBRD.write(IBRD::IBRD.val(26)); // Results in 115200 baud for UART Clk of 48 MHz.
inner.FBRD.write(FBRD::FBRD.val(3));
inner
.LCRH
.write(LCRH::WLEN::EightBit + LCRH::FEN::FifosEnabled); // 8N1 + Fifo on
inner
.CR
.write(CR::UARTEN::Enabled + CR::TXE::Enabled + CR::RXE::Enabled);
});
Ok(())
}
}
impl interface::console::Write for PL011Uart {
/// Passthrough of `args` to the `core::fmt::Write` implementation, but guarded by a Mutex to
/// serialize access.
fn write_char(&self, c: char) {
let mut r = &self.inner;
r.lock(|inner| inner.write_char(c));
}
fn write_fmt(&self, args: core::fmt::Arguments) -> fmt::Result {
// Fully qualified syntax for the call to `core::fmt::Write::write:fmt()` to increase
// readability.
let mut r = &self.inner;
r.lock(|inner| fmt::Write::write_fmt(inner, args))
}
fn flush(&self) {
let mut r = &self.inner;
// Spin until the TX FIFO empty flag is set.
r.lock(|inner| loop {
if inner.FR.is_set(FR::TXFE) {
break;
}
arch::nop();
});
}
}
impl interface::console::Read for PL011Uart {
fn read_char(&self) -> char {
let mut r = &self.inner;
r.lock(|inner| {
// Wait until buffer is filled.
loop {
if !inner.FR.is_set(FR::RXFE) {
break;
}
arch::nop();
}
// Read one character.
let mut ret = inner.DR.get() as u8 as char;
// Convert carrige return to newline.
if ret == '\r' {
ret = '\n'
}
ret
})
}
fn clear(&self) {
let mut r = &self.inner;
r.lock(|inner| loop {
// Read from the RX FIFO until the empty bit is '1'.
if !inner.FR.is_set(FR::RXFE) {
inner.DR.get();
} else {
break;
}
})
}
}
impl interface::console::Statistics for PL011Uart {
fn chars_written(&self) -> usize {
let mut r = &self.inner;
r.lock(|inner| inner.chars_written)
}
}

@ -0,0 +1,69 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Board Support Package for the Raspberry Pi.
mod memory_map;
mod virt_mem_layout;
use super::driver;
use crate::{interface, memory::KernelVirtualLayout};
pub const BOOT_CORE_ID: u64 = 0;
pub const BOOT_CORE_STACK_START: u64 = 0x80_000;
//--------------------------------------------------------------------------------------------------
// Global BSP driver instances
//--------------------------------------------------------------------------------------------------
static GPIO: driver::GPIO = unsafe { driver::GPIO::new(memory_map::mmio::GPIO_BASE) };
static PL011_UART: driver::PL011Uart =
unsafe { driver::PL011Uart::new(memory_map::mmio::PL011_UART_BASE) };
//--------------------------------------------------------------------------------------------------
// Implementation of the kernel's BSP calls
//--------------------------------------------------------------------------------------------------
/// Board identification.
pub fn board_name() -> &'static str {
#[cfg(feature = "bsp_rpi3")]
{
"Raspberry Pi 3"
}
#[cfg(feature = "bsp_rpi4")]
{
"Raspberry Pi 4"
}
}
/// Return a reference to a `console::All` implementation.
pub fn console() -> &'static impl interface::console::All {
&PL011_UART
}
/// Return an array of references to all `DeviceDriver` compatible `BSP` drivers.
///
/// # Safety
///
/// The order of devices is the order in which `DeviceDriver::init()` is called.
pub fn device_drivers() -> [&'static dyn interface::driver::DeviceDriver; 2] {
[&GPIO, &PL011_UART]
}
/// BSP initialization code that runs after driver init.
pub fn post_driver_init() {
// Configure PL011Uart's output pins.
GPIO.map_pl011_uart();
}
/// Return the address space size in bytes.
pub const fn addr_space_size() -> usize {
memory_map::END_INCLUSIVE + 1
}
/// Return a reference to the virtual memory layout.
pub fn virt_mem_layout() -> &'static KernelVirtualLayout<{ virt_mem_layout::NUM_MEM_RANGES }> {
&virt_mem_layout::LAYOUT
}

@ -0,0 +1,38 @@
/* SPDX-License-Identifier: MIT
*
* Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
*/
SECTIONS
{
/* Set current address to the value from which the RPi starts execution */
. = 0x80000;
__ro_start = .;
.text :
{
*(.text._start) *(.text*)
}
.rodata :
{
*(.rodata*)
}
. = ALIGN(65536); /* Fill up to 64 KiB */
__ro_end = .;
.data :
{
*(.data*)
}
/* Align to 8 byte boundary */
.bss ALIGN(8):
{
__bss_start = .;
*(.bss*);
__bss_end = .;
}
/DISCARD/ : { *(.comment*) }
}

@ -0,0 +1,27 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! The board's memory map.
#[cfg(feature = "bsp_rpi3")]
#[rustfmt::skip]
pub const END_INCLUSIVE: usize = 0x3FFF_FFFF;
#[cfg(feature = "bsp_rpi4")]
#[rustfmt::skip]
pub const END_INCLUSIVE: usize = 0xFFFF_FFFF;
/// Physical devices.
#[rustfmt::skip]
pub mod mmio {
#[cfg(feature = "bsp_rpi3")]
pub const BASE: usize = 0x3F00_0000;
#[cfg(feature = "bsp_rpi4")]
pub const BASE: usize = 0xFE00_0000;
pub const GPIO_BASE: usize = BASE + 0x0020_0000;
pub const PL011_UART_BASE: usize = BASE + 0x0020_1000;
pub const END_INCLUSIVE: usize = super::END_INCLUSIVE;
}

@ -0,0 +1,78 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! The virtual memory layout.
//!
//! The layout must contain only special ranges, aka anything that is _not_ normal cacheable DRAM.
//! It is agnostic of the paging granularity that the architecture's MMU will use.
use super::memory_map;
use crate::memory::*;
use core::ops::RangeInclusive;
pub const NUM_MEM_RANGES: usize = 3;
pub static LAYOUT: KernelVirtualLayout<{ NUM_MEM_RANGES }> = KernelVirtualLayout::new(
memory_map::END_INCLUSIVE,
[
RangeDescriptor {
name: "Kernel code and RO data",
virtual_range: || {
// Using the linker script, we ensure that the RO area is consecutive and 4 KiB
// aligned, and we export the boundaries via symbols:
//
// [__ro_start, __ro_end)
extern "C" {
// The inclusive start of the read-only area, aka the address of the first
// byte of the area.
static __ro_start: u64;
// The exclusive end of the read-only area, aka the address of the first
// byte _after_ the RO area.
static __ro_end: u64;
}
unsafe {
// Notice the subtraction to turn the exclusive end into an inclusive end.
#[allow(clippy::range_minus_one)]
RangeInclusive::new(
&__ro_start as *const _ as usize,
&__ro_end as *const _ as usize - 1,
)
}
},
translation: Translation::Identity,
attribute_fields: AttributeFields {
mem_attributes: MemAttributes::CacheableDRAM,
acc_perms: AccessPermissions::ReadOnly,
execute_never: false,
},
},
RangeDescriptor {
name: "Remapped Device MMIO",
virtual_range: || {
// The last 64 KiB slot in the first 512 MiB
RangeInclusive::new(0x1FFF_0000, 0x1FFF_FFFF)
},
translation: Translation::Offset(memory_map::mmio::BASE + 0x20_0000),
attribute_fields: AttributeFields {
mem_attributes: MemAttributes::Device,
acc_perms: AccessPermissions::ReadWrite,
execute_never: true,
},
},
RangeDescriptor {
name: "Device MMIO",
virtual_range: || {
RangeInclusive::new(memory_map::mmio::BASE, memory_map::mmio::END_INCLUSIVE)
},
translation: Translation::Identity,
attribute_fields: AttributeFields {
mem_attributes: MemAttributes::Device,
acc_perms: AccessPermissions::ReadWrite,
execute_never: true,
},
},
],
);

@ -0,0 +1,129 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Trait definitions for coupling `kernel` and `BSP` code.
//!
//! ```
//! +-------------------+
//! | Interface (Trait) |
//! | |
//! +--+-------------+--+
//! ^ ^
//! | |
//! | |
//! +----------+--+ +--+----------+
//! | Kernel code | | BSP Code |
//! | | | |
//! +-------------+ +-------------+
//! ```
/// System console operations.
pub mod console {
use core::fmt;
/// Console write functions.
pub trait Write {
fn write_char(&self, c: char);
fn write_fmt(&self, args: fmt::Arguments) -> fmt::Result;
/// Block execution until the last character has been physically put on the TX wire
/// (draining TX buffers/FIFOs, if any).
fn flush(&self);
}
/// Console read functions.
pub trait Read {
fn read_char(&self) -> char {
' '
}
/// Clear RX buffers, if any.
fn clear(&self);
}
/// Console statistics.
pub trait Statistics {
/// Return the number of characters written.
fn chars_written(&self) -> usize {
0
}
/// Return the number of characters read.
fn chars_read(&self) -> usize {
0
}
}
/// Trait alias for a full-fledged console.
pub trait All = Write + Read + Statistics;
}
/// Synchronization primitives.
pub mod sync {
/// Any object implementing this trait guarantees exclusive access to the data contained within
/// the mutex for the duration of the lock.
///
/// The trait follows the [Rust embedded WG's
/// proposal](https://github.com/korken89/wg/blob/master/rfcs/0377-mutex-trait.md) and therefore
/// provides some goodness such as [deadlock
/// prevention](https://github.com/korken89/wg/blob/master/rfcs/0377-mutex-trait.md#design-decisions-and-compatibility).
///
/// # Example
///
/// Since the lock function takes an `&mut self` to enable deadlock-prevention, the trait is
/// best implemented **for a reference to a container struct**, and has a usage pattern that
/// might feel strange at first:
///
/// ```
/// static MUT: Mutex<RefCell<i32>> = Mutex::new(RefCell::new(0));
///
/// fn foo() {
/// let mut r = &MUT; // Note that r is mutable
/// r.lock(|data| *data += 1);
/// }
/// ```
pub trait Mutex {
/// Type of data encapsulated by the mutex.
type Data;
/// Creates a critical section and grants temporary mutable access to the encapsulated data.
fn lock<R>(&mut self, f: impl FnOnce(&mut Self::Data) -> R) -> R;
}
}
/// Driver interfaces.
pub mod driver {
/// Driver result type, e.g. for indicating successful driver init.
pub type Result = core::result::Result<(), ()>;
/// Device Driver functions.
pub trait DeviceDriver {
/// Return a compatibility string for identifying the driver.
fn compatible(&self) -> &str;
/// Called by the kernel to bring up the device.
fn init(&self) -> Result {
Ok(())
}
}
}
/// Timekeeping interfaces.
pub mod time {
use core::time::Duration;
/// Timer functions.
pub trait Timer {
/// The timer's resolution.
fn resolution(&self) -> Duration;
/// The uptime since power-on of the device.
///
/// This includes time consumed by firmware and bootloaders.
fn uptime(&self) -> Duration;
/// Spin for a given duration.
fn spin_for(&self, duration: Duration);
}
}

@ -0,0 +1,115 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
// Rust embedded logo for `make doc`.
#![doc(html_logo_url = "https://git.io/JeGIp")]
//! The `kernel`
//!
//! The `kernel` is composed by glueing together code from
//!
//! - [Hardware-specific Board Support Packages] (`BSPs`).
//! - [Architecture-specific code].
//! - HW- and architecture-agnostic `kernel` code.
//!
//! using the [`kernel::interface`] traits.
//!
//! [Hardware-specific Board Support Packages]: bsp/index.html
//! [Architecture-specific code]: arch/index.html
//! [`kernel::interface`]: interface/index.html
#![allow(incomplete_features)]
#![feature(const_generics)]
#![feature(format_args_nl)]
#![feature(panic_info_message)]
#![feature(trait_alias)]
#![no_main]
#![no_std]
// Conditionally includes the selected `architecture` code, which provides the `_start()` function,
// the first function to run.
mod arch;
// `_start()` then calls `runtime_init::init()`, which on completion, jumps to `kernel_init()`.
mod runtime_init;
// Conditionally includes the selected `BSP` code.
mod bsp;
mod interface;
mod memory;
mod panic_wait;
mod print;
/// Early init code.
///
/// Concerned with with initializing `BSP` and `arch` parts.
///
/// # Safety
///
/// - Only a single core must be active and running this function.
/// - The init calls in this function must appear in the correct order.
unsafe fn kernel_init() -> ! {
// Bring up device drivers first, so that eventual MMU errors can be printed.
for i in bsp::device_drivers().iter() {
if let Err(()) = i.init() {
// This message will only be readable if, at the time of failure, the return value of
// `bsp::console()` is already in functioning state.
panic!("Error loading driver: {}", i.compatible())
}
}
bsp::post_driver_init();
println!("Booting on: {}", bsp::board_name());
if let Err(string) = arch::mmu::init() {
panic!("MMU: {}", string);
}
println!("MMU online");
// Transition from unsafe to safe.
kernel_main()
}
/// The main function running after the early init.
fn kernel_main() -> ! {
use core::time::Duration;
use interface::{console::All, time::Timer};
bsp::virt_mem_layout().print_layout();
println!(
"Current privilege level: {}",
arch::state::current_privilege_level()
);
println!("Exception handling state:");
arch::state::print_exception_state();
println!(
"Architectural timer resolution: {} ns",
arch::timer().resolution().as_nanos()
);
println!("Drivers loaded:");
for (i, driver) in bsp::device_drivers().iter().enumerate() {
println!(" {}. {}", i + 1, driver.compatible());
}
println!("Timer test, spinning for 1 second");
arch::timer().spin_for(Duration::from_secs(1));
let remapped_uart = unsafe { bsp::driver::PL011Uart::new(0x1FFF_1000) };
writeln!(
remapped_uart,
"[ !!! ] Writing through the remapped UART at 0x1FFF_1000"
)
.unwrap();
println!("Echoing input now");
loop {
let c = bsp::console().read_char();
bsp::console().write_char(c);
}
}

@ -0,0 +1,149 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Memory Management.
use core::{fmt, ops::RangeInclusive};
#[derive(Copy, Clone)]
pub enum Translation {
Identity,
Offset(usize),
}
#[derive(Copy, Clone)]
pub enum MemAttributes {
CacheableDRAM,
Device,
}
#[derive(Copy, Clone)]
pub enum AccessPermissions {
ReadOnly,
ReadWrite,
}
#[derive(Copy, Clone)]
pub struct AttributeFields {
pub mem_attributes: MemAttributes,
pub acc_perms: AccessPermissions,
pub execute_never: bool,
}
impl Default for AttributeFields {
fn default() -> AttributeFields {
AttributeFields {
mem_attributes: MemAttributes::CacheableDRAM,
acc_perms: AccessPermissions::ReadWrite,
execute_never: true,
}
}
}
/// An architecture agnostic descriptor for a memory range.
pub struct RangeDescriptor {
pub name: &'static str,
pub virtual_range: fn() -> RangeInclusive<usize>,
pub translation: Translation,
pub attribute_fields: AttributeFields,
}
/// Human-readable output of a RangeDescriptor.
impl fmt::Display for RangeDescriptor {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// Call the function to which self.range points, and dereference the result, which causes
// Rust to copy the value.
let start = *(self.virtual_range)().start();
let end = *(self.virtual_range)().end();
let size = end - start + 1;
// log2(1024).
const KIB_RSHIFT: u32 = 10;
// log2(1024 * 1024).
const MIB_RSHIFT: u32 = 20;
let (size, unit) = if (size >> MIB_RSHIFT) > 0 {
(size >> MIB_RSHIFT, "MiB")
} else if (size >> KIB_RSHIFT) > 0 {
(size >> KIB_RSHIFT, "KiB")
} else {
(size, "Byte")
};
let attr = match self.attribute_fields.mem_attributes {
MemAttributes::CacheableDRAM => "C",
MemAttributes::Device => "Dev",
};
let acc_p = match self.attribute_fields.acc_perms {
AccessPermissions::ReadOnly => "RO",
AccessPermissions::ReadWrite => "RW",
};
let xn = if self.attribute_fields.execute_never {
"PXN"
} else {
"PX"
};
write!(
f,
" {:#010X} - {:#010X} | {: >3} {} | {: <3} {} {: <3} | {}",
start, end, size, unit, attr, acc_p, xn, self.name
)
}
}
/// Type for expressing the kernel's virtual memory layout.
pub struct KernelVirtualLayout<const NUM_SPECIAL_RANGES: usize> {
max_virt_addr_inclusive: usize,
inner: [RangeDescriptor; NUM_SPECIAL_RANGES],
}
impl<const NUM_SPECIAL_RANGES: usize> KernelVirtualLayout<{ NUM_SPECIAL_RANGES }> {
pub const fn new(max: usize, layout: [RangeDescriptor; NUM_SPECIAL_RANGES]) -> Self {
Self {
max_virt_addr_inclusive: max,
inner: layout,
}
}
/// For a virtual address, find and return the output address and corresponding attributes.
///
/// If the address is not found in `inner`, return an identity mapped default with normal
/// cacheable DRAM attributes.
pub fn get_virt_addr_properties(
&self,
virt_addr: usize,
) -> Result<(usize, AttributeFields), &'static str> {
if virt_addr > self.max_virt_addr_inclusive {
return Err("Address out of range");
}
for i in self.inner.iter() {
if (i.virtual_range)().contains(&virt_addr) {
let output_addr = match i.translation {
Translation::Identity => virt_addr,
Translation::Offset(a) => a + (virt_addr - (i.virtual_range)().start()),
};
return Ok((output_addr, i.attribute_fields));
}
}
Ok((virt_addr, AttributeFields::default()))
}
/// Print the memory layout.
pub fn print_layout(&self) {
use crate::println;
println!("Special memory regions:");
for i in self.inner.iter() {
println!("{}", i);
}
}
}

@ -0,0 +1,19 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! A panic handler that infinitely waits.
use crate::{arch, println};
use core::panic::PanicInfo;
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
if let Some(args) = info.message() {
println!("Kernel panic: {}", args);
} else {
println!("Kernel panic!");
}
arch::wait_forever()
}

@ -0,0 +1,91 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Printing facilities.
use crate::{bsp, interface};
use core::fmt;
/// Prints without a newline.
///
/// Carbon copy from https://doc.rust-lang.org/src/std/macros.rs.html
#[macro_export]
macro_rules! print {
($($arg:tt)*) => ($crate::print::_print(format_args!($($arg)*)));
}
/// Prints with a newline.
#[macro_export]
macro_rules! println {
() => ($crate::print!("\n"));
($string:expr) => ({
#[allow(unused_imports)]
use crate::interface::time::Timer;
let timestamp = $crate::arch::timer().uptime();
let timestamp_subsec_us = timestamp.subsec_micros();
$crate::print::_print(format_args_nl!(
concat!("[ {:>3}.{:03}{:03}] ", $string),
timestamp.as_secs(),
timestamp_subsec_us / 1_000,
timestamp_subsec_us % 1_000
));
});
($format_string:expr, $($arg:tt)*) => ({
#[allow(unused_imports)]
use crate::interface::time::Timer;
let timestamp = $crate::arch::timer().uptime();
let timestamp_subsec_us = timestamp.subsec_micros();
$crate::print::_print(format_args_nl!(
concat!("[ {:>3}.{:03}{:03}] ", $format_string),
timestamp.as_secs(),
timestamp_subsec_us / 1_000,
timestamp_subsec_us % 1_000,
$($arg)*
));
})
}
/// Prints a warning, with newline.
#[macro_export]
macro_rules! warn {
($string:expr) => ({
#[allow(unused_imports)]
use crate::interface::time::Timer;
let timestamp = $crate::arch::timer().uptime();
let timestamp_subsec_us = timestamp.subsec_micros();
$crate::print::_print(format_args_nl!(
concat!("[W {:>3}.{:03}{:03}] ", $string),
timestamp.as_secs(),
timestamp_subsec_us / 1_000,
timestamp_subsec_us % 1_000
));
});
($format_string:expr, $($arg:tt)*) => ({
#[allow(unused_imports)]
use crate::interface::time::Timer;
let timestamp = $crate::arch::timer().uptime();
let timestamp_subsec_us = timestamp.subsec_micros();
$crate::print::_print(format_args_nl!(
concat!("[W {:>3}.{:03}{:03}] ", $format_string),
timestamp.as_secs(),
timestamp_subsec_us / 1_000,
timestamp_subsec_us % 1_000,
$($arg)*
));
})
}
pub fn _print(args: fmt::Arguments) {
use interface::console::Write;
bsp::console().write_fmt(args).unwrap();
}

@ -0,0 +1,24 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Rust runtime initialization code.
/// Equivalent to `crt0` or `c0` code in C/C++ world. Clears the `bss` section, then jumps to kernel
/// init code.
///
/// # Safety
///
/// - Only a single core must be active and running this function.
pub unsafe fn init() -> ! {
extern "C" {
// Boundaries of the .bss section, provided by the linker script.
static mut __bss_start: u64;
static mut __bss_end: u64;
}
// Zero out the .bss section.
r0::zero_bss(&mut __bss_start, &mut __bss_end);
crate::kernel_init()
}

@ -9,8 +9,7 @@
You can find the original version of the tutorials
[here](https://github.com/rust-embedded/rust-raspi3-OS-tutorials/tree/original_version).
They are worth checking out for some advanced features that are not yet
rewritten, like _virtual memory_ or _exception handling_. They will be ported
over soon, though (if time permits).
rewritten, like _exception handling_. They will be ported over soon, though.
Some info on the rewrite and in general:
- I will first add
@ -30,8 +29,8 @@ _Cheers,
[Andre](https://github.com/andre-richter)_
[Visual Studio Code]: https://code.visualstudio.com
[Rust Language Server]: https://github.com/rust-lang/rls
[Visual Studio Code]: https://code.visualstudio.com
[Rust Language Server]: https://github.com/rust-lang/rls
## Introduction

Binary file not shown.

After

Width:  |  Height:  |  Size: 96 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 92 KiB

Loading…
Cancel
Save