Refactor tutorial 12

pull/51/head
Andre Richter 4 years ago
parent 1496e003d8
commit 85b88788d0
No known key found for this signature in database
GPG Key ID: 2116C1AB102F615E

@ -1,992 +0,0 @@
# Tutorial 12 - CPU Exceptions: Part 1
## tl;dr
We lay the groundwork for all the architectural `CPU exceptions`. For now, only print an elaborate
system state through a `panic!` call, and halt execution; This will help finding bugs during
development and runtime.
For demo purposes, MMU `page faults` are used to demonstrate (i) returning from an exception and
(ii) the default `panic!` behavior.
## Table of Contents
- [Introduction](#introduction)
- [Exception Types](#exception-types)
- [Exception entry](#exception-entry)
* [Exception Vectors](#exception-vectors)
- [Handler Code and Offsets](#handler-code-and-offsets)
- [Rust and Assembly Implementation](#rust-and-assembly-implementation)
* [Context Save and Restore](#context-save-and-restore)
* [Exception Vector Table](#exception-vector-table)
* [Implementing handlers](#implementing-handlers)
- [Causing an Exception - Testing the Code](#causing-an-exception---testing-the-code)
- [Test it](#test-it)
- [Diff to previous](#diff-to-previous)
## Introduction
Now that we are executing in `EL1`, and have activated the `MMU`, time is due for implementing `CPU
exceptions`. For now, we only set up a scaffold with very basic functionality that will help us to
find bugs along the way. A follow-up `Interrupt` tutorial in the future will continue the work we
start here.
Please note that this tutorial is specific to the `AArch64` architecture. It does not contain any
generic exception handling code yet.
## Exception Types
In `AArch64`, it is differentiated between four types of exceptions. These are:
- Synchronous
- For example, a `data abort` (e.g. `page fault`) or a `system call`. They happen in direct
consequence of executing a certain instruction, hence _synchronously_.
- Interrupt Request (`IRQ`)
- For example, an external device, like a timer, is asserting a physical interrupt line. IRQs
happen _asynchronously_.
- Fast Interrupt Request (`FIQ`)
- These are basically interrupts that take priority over normal IRQs and have some more traits
that make them suitable to implement super-fast processing. However, this is out of scope for
this tutorial. For the sake of keeping these tutorials compact and concise, we will more or less
ignore FIQs and only implement a dummy handler that would halt the CPU core.
- System Error (`SError`)
- Like IRQs, SErrors happen asynchronously and are technically more or less the same. They are
intended to signal rather fatal errors in the system, e.g. if a transaction times out on the
`SoC` interconnect. They are very implementation specific and it is up to the SoC vendor to
decide which events are delivered as SErrors instead of normal IRQs.
## Exception entry
I recommend to read pages 1874-1876 of the [ARMv8 Architecture Reference Manual][ARMv8_Manual] to
understand the mechanisms of taking an exception.
Here's an excerpt of important features for this tutorial:
- Exception entry moves the processor to the same or a higher `Exception Level`, but never to a
lower `EL`.
- The program status is saved in the `SPSR_ELx` register at the target `EL`.
- The preferred return address is saved in the `ELR_ELx` register.
- "Preferred" here means that `ELR_ELx` may hold the instruction address of the instructions that
caused the exception (`synchronous case`) or the first instruction that did not complete due to
an `asynchronous` exception. Details in Chapter D1.10.1 of the [ARMv8 Architecture Reference
Manual][ARMv8_Manual].
- All kinds of exceptions are turned off upon taking an exception, so that by default, exception
handlers can not get interrupted themselves.
- Taking an exception will select the dedicated stack pointer of the target `EL`.
- For example, if an exception in `EL0` is taken, the Stack Pointer Select register `SPSel` will
switch from `0` to `1`, meaning that `SP_EL1` will be used by the exception vector code unless
you explicitly change it back to `SP_EL0`.
### Exception Vectors
`AArch64` has a total of `16` exception vectors. There is one for each of the four kinds that were
introduced already, and additionally, it is taken into account _where_ the exception was taken from
and what the circumstances were.
Here is a copy of the decision table as shown in Chapter D1.10.2 of the [ARMv8 Architecture
Reference Manual][ARMv8_Manual]:
[ARMv8_Manual]: https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
<table>
<thead>
<tr>
<th rowspan=2>Exception taken from </th>
<th colspan=4>Offset for exception type</th>
</tr>
<tr>
<th>Synchronous</th>
<th>IRQ or vIRQ</th>
<th>FIQ or vFIQ</th>
<th>SError or vSError</th>
</tr>
</thead>
<tbody>
<tr>
<td width="40%">Current Exception level with SP_EL0.</td>
<td align="center">0x000</td>
<td align="center">0x080</td>
<td align="center">0x100</td>
<td align="center">0x180</td>
</tr>
<tr>
<td>Current Exception level with SP_ELx, x>0.</td>
<td align="center">0x200</td>
<td align="center">0x280</td>
<td align="center">0x300</td>
<td align="center">0x380</td>
</tr>
<tr>
<td>Lower Exception level, where the implemented level immediately lower than the target level is using AArch64.</td>
<td align="center">0x400</td>
<td align="center">0x480</td>
<td align="center">0x500</td>
<td align="center">0x580</td>
</tr>
<tr>
<td>Lower Exception level, where the implemented level immediately lower than the target level is using AArch32.</td>
<td align="center">0x600</td>
<td align="center">0x680</td>
<td align="center">0x700</td>
<td align="center">0x780</td>
</tr>
</tbody>
</table>
Since our kernel runs in `EL1`, using `SP_EL1`, if we'd cause a synchronous exception, the exception
vector at offset `0x200` would be executed. But what does that even mean?
## Handler Code and Offsets
In many architectures, Operating Systems register their exception handlers (aka vectors) by
compiling an architecturally defined data structure that stores function pointers to the different
handlers. This can be as simple as an ordinary array of function pointers. The `base address` of
this data structure is then stored into a special purpose register so that the CPU can branch to the
respective handler function upon taking an exception. The classic `x86_64` architecture follows this
principle, for example.
In `AArch64`, it is a bit different. Here, we have the special purpose register as well, called
`VBAR_EL1`: Vector Base Address Register.
However, it does not store the base address of an array of function pointers, but the base address
of a **memory location that contains code** for the 16 handlers, one handler back-to-back after the
other. Each handler can take a maximum space of `0x80` bytes, aka `128` bytes. That's why the table
above shows `offsets`: To indicate at which offset a certain handler starts.
Of course, you are not obliged to cram all your handler code into only 128 bytes. You are free to
branch off to any other functions at any time. Actually, that is needed in most cases anyways,
because the context-saving code alone would take up most of the available space (you'll learn what
context saving is shortly).
Additionally, there is a requirement that the `Vector Base Address` is aligned to `0x800` aka `2048`
bytes.
## Rust and Assembly Implementation
The implementation uses a mix of `Rust` and `Assembly` code.
### Context Save and Restore
Exception vectors, just like any other code, use a bunch of commonly shared processor resources.
Most of all, the set of `General Purpose Registers` (GPRs) that each core in `AArch64` provides
(`x0`-`x30`).
In order to not taint these registers when executing exception vector code, it is general practice
to save these shared resources in memory (the stack, to be precise) as the very first action. This
is commonly described as *saving the context*. Exception vector code can then use the shared
resources in its own code without bothering, and as a last action before returning from exception
handling code, restore the context, so that the processor can continue where it left off before
taking the exception.
Context save and restore is one of the few places in system software where it is strongly advised to
to use some hand-crafted assembly. Introducing `exception.S`:
```asm
/// Call the function provided by parameter `\handler` after saving exception context. Provide the
/// context as the first parameter to '\handler'.
.macro CALL_WITH_CONTEXT handler
// Make room on the stack for the exception context.
sub sp, sp, #16 * 17
// Store all general purpose registers on the stack.
stp x0, x1, [sp, #16 * 0]
stp x2, x3, [sp, #16 * 1]
stp x4, x5, [sp, #16 * 2]
stp x6, x7, [sp, #16 * 3]
stp x8, x9, [sp, #16 * 4]
stp x10, x11, [sp, #16 * 5]
stp x12, x13, [sp, #16 * 6]
stp x14, x15, [sp, #16 * 7]
stp x16, x17, [sp, #16 * 8]
stp x18, x19, [sp, #16 * 9]
stp x20, x21, [sp, #16 * 10]
stp x22, x23, [sp, #16 * 11]
stp x24, x25, [sp, #16 * 12]
stp x26, x27, [sp, #16 * 13]
stp x28, x29, [sp, #16 * 14]
// Add the exception link register (ELR_EL1) and the saved program status (SPSR_EL1).
mrs x1, ELR_EL1
mrs x2, SPSR_EL1
stp lr, x1, [sp, #16 * 15]
str w2, [sp, #16 * 16]
// x0 is the first argument for the function called through `\handler`.
mov x0, sp
// Call `\handler`.
bl \handler
// After returning from exception handling code, replay the saved context and return via `eret`.
b __exception_restore_context
.endm
```
First, a macro for saving the context is defined. It eventually jumps to follow-up handler code, and
finally restores the context. In advance, we reserve space on the stack for the context. That is,
the 30 `GPRs`, the `link register`, the `saved program status` and the `exception link register`
(holding the preferred return address). Afterwards, we store those registers, save the current stack
address in `x0` and branch off to follow-up handler-code, whose function name is supplied as an
argument to the macro (`\handler`).
The handler code will be written in Rust, but use the platform's `C` ABI. This way, we can define a
function signature that has a pointer to the context-data on the stack as its first argument, and
know that this argument is expected to be in the `x0` register. We need to use the `C` ABI here
because `Rust` has no stable convention ([yet](https://github.com/rust-lang/rfcs/issues/600)).
### Exception Vector Table
Next, we craft the exception vector table:
```asm
.section .exception_vectors, "ax", @progbits
// Align by 2^11 bytes, as demanded by the AArch64 spec. Same as ALIGN(2048) in an ld script.
.align 11
// Export a symbol for the Rust code to use.
__exception_vector_start:
// Current exception level with SP_EL0.
// .org sets the offset relative to section start.
//
// It must be ensured that `CALL_WITH_CONTEXT` <= 0x80 bytes.
.org 0x000
CALL_WITH_CONTEXT current_el0_synchronous
.org 0x080
CALL_WITH_CONTEXT current_el0_irq
.org 0x100
FIQ_SUSPEND
.org 0x180
CALL_WITH_CONTEXT current_el0_serror
// Current exception level with SP_ELx, x > 0.
.org 0x200
CALL_WITH_CONTEXT current_elx_synchronous
.org 0x280
CALL_WITH_CONTEXT current_elx_irq
.org 0x300
FIQ_SUSPEND
.org 0x380
CALL_WITH_CONTEXT current_elx_serror
[...]
```
Note how each vector starts at the required offset from the section start using the `.org`
directive. Each macro call introduces an explicit handler function name, which is implemented in
`Rust` in `exception.rs`.
### Implementing handlers
The file `exception.rs` first defines a `struct` of the exception context that is stored on the
stack by the assembly code:
```rust
/// The exception context as it is stored on the stack on exception entry.
#[repr(C)]
struct ExceptionContext {
// General Purpose Registers.
gpr: [u64; 30],
// The link register, aka x30.
lr: u64,
// Exception link register. The program counter at the time the exception happened.
elr_el1: u64,
// Saved program status.
spsr_el1: SpsrEL1,
}
```
The handlers take a `struct ExceptionContext` argument. Since we do not plan to implement handlers
for each exception yet, a default handler is provided:
```rust
/// Print verbose information about the exception and the panic.
fn default_exception_handler(e: &ExceptionContext) {
panic!(
"\n\nCPU Exception!\n\
FAR_EL1: {:#018x}\n\
{}\n\
{}",
FAR_EL1.get(),
EsrEL1 {},
e
);
}
```
The actual handlers referenced from the assembly can now branch to it for the time being, e.g.:
```rust
#[no_mangle]
unsafe extern "C" fn current_el0_synchronous(e: &mut ExceptionContext) {
default_exception_handler(e);
}
```
## Causing an Exception - Testing the Code
We want to see two cases in action:
1. How taking, handling and returning from an exception works.
2. How the `panic!` print for unhandled exceptions looks like.
So after setting up exceptions in `main.rs` by calling
```rust
arch::enable_exception_handling();
```
we cause a data abort exception by reading from memory address `8 GiB`:
```rust
// Cause an exception by accessing a virtual address for which no translation was set up. This
// code accesses the address 8 GiB, which is outside the mapped address space.
//
// For demo purposes, the exception handler will catch the faulting 8 GiB address and allow
// execution to continue.
info!("");
info!("Trying to write to address 8 GiB...");
let mut big_addr: u64 = 8 * 1024 * 1024 * 1024;
unsafe { core::ptr::read_volatile(big_addr as *mut u64) };
```
This triggers our exception code, because we try to read from a virtual address for which no mapping
has been installed. Remember, we only installed identity-mapped page tables for the first `1 GiB`
(RPi3) or `4 GiB` (RPi4) of address space in the previous tutorial.
To survive this exception, the respective handler has a special demo case:
```rust
/// Asynchronous exception taken from the current EL, using SP of the current EL.
#[no_mangle]
unsafe extern "C" fn current_elx_synchronous(e: &mut ExceptionContext) {
let far_el1 = FAR_EL1.extract().get();
// This catches the demo case for this tutorial. If the fault address happens to be 8 GiB,
// advance the exception link register for one instruction, so that execution can continue.
if far_el1 == 8 * 1024 * 1024 * 1024 {
e.elr_el1 += 4;
asm::eret()
}
default_exception_handler(e);
}
```
It checks if the faulting address equals `8 GiB`, and if so, advances the copy of the `ELR` by 4,
which makes it point to the next instruction after the instruction that caused the exception. When
this handler returns, execution continues in the assembly macro we introduced before. The macro has
only one more line left: `b __exception_restore_context`, which jumps to an assembly function that
plays back our saved context before finally executing `eret` to return from the exception.
This will kick us back into `main.rs`. But we also want to see the `panic!` print.
Therefore, a second read is done, this time from address `9 GiB`. A case which the handler will not
catch, eventually triggering the `panic!` call from the default handler.
## Test it
Emphasis on the events at timestamps > `6.xxxxxx`.
```console
» make chainboot
[...]
Minipush 1.0
[MP] ⏳ Waiting for /dev/ttyUSB0
[MP] ✅ Connected
__ __ _ _ _ _
| \/ (_)_ _ (_) | ___ __ _ __| |
| |\/| | | ' \| | |__/ _ \/ _` / _` |
|_| |_|_|_||_|_|____\___/\__,_\__,_|
Raspberry Pi 3
[ML] Requesting binary
[MP] ⏩ Pushing 64 KiB ========================================🦀 100% 32 KiB/s Time: 00:00:02
[ML] Loaded! Executing the payload now
[ 2.913260] Booting on: Raspberry Pi 3
[ 2.914344] MMU online. Special regions:
[ 2.916256] 0x00080000 - 0x0008ffff | 64 KiB | C RO PX | Kernel code and RO data
[ 2.920338] 0x3f000000 - 0x3fffffff | 16 MiB | Dev RW PXN | Device MMIO
[ 2.923901] Current privilege level: EL1
[ 2.925812] Exception handling state:
[ 2.927593] Debug: Masked
[ 2.929156] SError: Masked
[ 2.930720] IRQ: Masked
[ 2.932284] FIQ: Masked
[ 2.933848] Architectural timer resolution: 52 ns
[ 2.936150] Drivers loaded:
[ 2.937496] 1. GPIO
[ 2.938756] 2. PL011Uart
[ 2.940233] Timer test, spinning for 1 second
[ 3.942362]
[ 3.942366] Trying to write to address 8 GiB...
[ 3.944531] ************************************************
[ 3.947310] Whoa! We recovered from a synchronous exception!
[ 3.950091] ************************************************
[ 3.952870]
[ 3.953566] Let's try again
[ 3.954912] Trying to write to address 9 GiB...
Kernel panic:
CPU Exception!
FAR_EL1: 0x0000000240000000
ESR_EL1: 0x96000004
Exception Class (EC) : 0x25 - Data Abort, current EL
Instr Specific Syndrome (ISS): 0x4
ELR_EL1: 0x0000000000080e50
SPSR_EL1: 0x600003c5
Flags:
Negative (N): Not set
Zero (Z): Set
Carry (C): Set
Overflow (V): Not set
Exception handling state:
Debug (D): Masked
SError (A): Masked
IRQ (I): Masked
FIQ (F): Masked
Illegal Execution State (IL): Not set
General purpose register:
x0 : 0x0000000000000000 x1 : 0x000000000008594e
x2 : 0x0000000000000026 x3 : 0x0000000000082b38
x4 : 0x000000000007fc5c x5 : 0x0000000000000003
x6 : 0x0000000000000000 x7 : 0xd3d1c80822850243
x8 : 0x0000000240000000 x9 : 0x000000000008594e
x10: 0x0000000000000414 x11: 0x000000003f201000
x12: 0x0000000000000019 x13: 0x000000000007fc5d
x14: 0x000000000007fda8 x15: 0x0000000000000040
x16: 0x0000000000000000 x17: 0x0000000000000040
x18: 0x9cc47880812f1200 x19: 0x0000000000090008
x20: 0x000000003b9aca00 x21: 0x00000000000003e8
x22: 0x0000000000083070 x23: 0x00000000000831e4
x24: 0x00000000000f4240 x25: 0x00000000000852a8
x26: 0x0000000000085738 x27: 0x0000000000085818
x28: 0x00000000000831e4 x29: 0x0000000000085588
lr : 0x0000000000080e44
```
## Diff to previous
```diff
diff -uNr 11_virtual_memory/src/arch/aarch64/exception.rs 12_cpu_exceptions_part1/src/arch/aarch64/exception.rs
--- 11_virtual_memory/src/arch/aarch64/exception.rs
+++ 12_cpu_exceptions_part1/src/arch/aarch64/exception.rs
@@ -4,12 +4,248 @@
//! Exception handling.
-use cortex_a::regs::*;
+use core::fmt;
+use cortex_a::{asm, barrier, regs::*};
+use register::InMemoryRegister;
+
+// Assembly counterpart to this file.
+global_asm!(include_str!("exception.S"));
+
+/// Wrapper struct for memory copy of SPSR_EL1.
+#[repr(transparent)]
+struct SpsrEL1(InMemoryRegister<u32, SPSR_EL1::Register>);
+
+/// The exception context as it is stored on the stack on exception entry.
+#[repr(C)]
+struct ExceptionContext {
+ // General Purpose Registers.
+ gpr: [u64; 30],
+ // The link register, aka x30.
+ lr: u64,
+ // Exception link register. The program counter at the time the exception happened.
+ elr_el1: u64,
+ // Saved program status.
+ spsr_el1: SpsrEL1,
+}
+
+/// Wrapper struct for pretty printing ESR_EL1.
+struct EsrEL1;
+
+//--------------------------------------------------------------------------------------------------
+// Exception vector implementation
+//--------------------------------------------------------------------------------------------------
+
+/// Print verbose information about the exception and the panic.
+fn default_exception_handler(e: &ExceptionContext) {
+ panic!(
+ "\n\nCPU Exception!\n\
+ FAR_EL1: {:#018x}\n\
+ {}\n\
+ {}",
+ FAR_EL1.get(),
+ EsrEL1 {},
+ e
+ );
+}
+
+//--------------------------------------------------------------------------------------------------
+// Current, EL0
+//--------------------------------------------------------------------------------------------------
+
+#[no_mangle]
+unsafe extern "C" fn current_el0_synchronous(e: &mut ExceptionContext) {
+ default_exception_handler(e);
+}
+
+#[no_mangle]
+unsafe extern "C" fn current_el0_irq(e: &mut ExceptionContext) {
+ default_exception_handler(e);
+}
+
+#[no_mangle]
+unsafe extern "C" fn current_el0_serror(e: &mut ExceptionContext) {
+ default_exception_handler(e);
+}
+
+//--------------------------------------------------------------------------------------------------
+// Current, ELx
+//--------------------------------------------------------------------------------------------------
+
+/// Asynchronous exception taken from the current EL, using SP of the current EL.
+#[no_mangle]
+unsafe extern "C" fn current_elx_synchronous(e: &mut ExceptionContext) {
+ let far_el1 = FAR_EL1.get();
+
+ // This catches the demo case for this tutorial. If the fault address happens to be 8 GiB,
+ // advance the exception link register for one instruction, so that execution can continue.
+ if far_el1 == 8 * 1024 * 1024 * 1024 {
+ e.elr_el1 += 4;
+
+ asm::eret()
+ }
+
+ default_exception_handler(e);
+}
+
+#[no_mangle]
+unsafe extern "C" fn current_elx_irq(e: &mut ExceptionContext) {
+ default_exception_handler(e);
+}
+
+#[no_mangle]
+unsafe extern "C" fn current_elx_serror(e: &mut ExceptionContext) {
+ default_exception_handler(e);
+}
+
+//--------------------------------------------------------------------------------------------------
+// Lower, AArch64
+//--------------------------------------------------------------------------------------------------
+
+#[no_mangle]
+unsafe extern "C" fn lower_aarch64_synchronous(e: &mut ExceptionContext) {
+ default_exception_handler(e);
+}
+
+#[no_mangle]
+unsafe extern "C" fn lower_aarch64_irq(e: &mut ExceptionContext) {
+ default_exception_handler(e);
+}
+
+#[no_mangle]
+unsafe extern "C" fn lower_aarch64_serror(e: &mut ExceptionContext) {
+ default_exception_handler(e);
+}
+
+//--------------------------------------------------------------------------------------------------
+// Lower, AArch32
+//--------------------------------------------------------------------------------------------------
+
+#[no_mangle]
+unsafe extern "C" fn lower_aarch32_synchronous(e: &mut ExceptionContext) {
+ default_exception_handler(e);
+}
+
+#[no_mangle]
+unsafe extern "C" fn lower_aarch32_irq(e: &mut ExceptionContext) {
+ default_exception_handler(e);
+}
+
+#[no_mangle]
+unsafe extern "C" fn lower_aarch32_serror(e: &mut ExceptionContext) {
+ default_exception_handler(e);
+}
+
+//--------------------------------------------------------------------------------------------------
+// Pretty printing
+//--------------------------------------------------------------------------------------------------
+
+/// Human readable ESR_EL1.
+#[rustfmt::skip]
+impl fmt::Display for EsrEL1 {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ let esr_el1 = ESR_EL1.extract();
+
+ // Raw print of whole register.
+ writeln!(f, "ESR_EL1: {:#010x}", esr_el1.get())?;
+
+ // Raw print of exception class.
+ write!(f, " Exception Class (EC) : {:#x}", esr_el1.read(ESR_EL1::EC))?;
+
+ // Exception class, translation.
+ let ec_translation = match esr_el1.read_as_enum(ESR_EL1::EC) {
+ Some(ESR_EL1::EC::Value::DataAbortCurrentEL) => "Data Abort, current EL",
+ _ => "N/A",
+ };
+ writeln!(f, " - {}", ec_translation)?;
+
+ // Raw print of instruction specific syndrome.
+ write!(f, " Instr Specific Syndrome (ISS): {:#x}", esr_el1.read(ESR_EL1::ISS))?;
+
+ Ok(())
+ }
+}
+
+/// Human readable SPSR_EL1.
+#[rustfmt::skip]
+impl fmt::Display for SpsrEL1 {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ // Raw value.
+ writeln!(f, "SPSR_EL1: {:#010x}", self.0.get())?;
+
+ let to_flag_str = |x| -> _ {
+ if x { "Set" } else { "Not set" }
+ };
+
+ writeln!(f, " Flags:")?;
+ writeln!(f, " Negative (N): {}", to_flag_str(self.0.is_set(SPSR_EL1::N)))?;
+ writeln!(f, " Zero (Z): {}", to_flag_str(self.0.is_set(SPSR_EL1::Z)))?;
+ writeln!(f, " Carry (C): {}", to_flag_str(self.0.is_set(SPSR_EL1::C)))?;
+ writeln!(f, " Overflow (V): {}", to_flag_str(self.0.is_set(SPSR_EL1::V)))?;
+
+ let to_mask_str = |x| -> _ {
+ if x { "Masked" } else { "Unmasked" }
+ };
+
+ writeln!(f, " Exception handling state:")?;
+ writeln!(f, " Debug (D): {}", to_mask_str(self.0.is_set(SPSR_EL1::D)))?;
+ writeln!(f, " SError (A): {}", to_mask_str(self.0.is_set(SPSR_EL1::A)))?;
+ writeln!(f, " IRQ (I): {}", to_mask_str(self.0.is_set(SPSR_EL1::I)))?;
+ writeln!(f, " FIQ (F): {}", to_mask_str(self.0.is_set(SPSR_EL1::F)))?;
+
+ write!(f, " Illegal Execution State (IL): {}",
+ to_flag_str(self.0.is_set(SPSR_EL1::IL))
+ )?;
+
+ Ok(())
+ }
+}
+
+/// Human readable print of the exception context.
+impl fmt::Display for ExceptionContext {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ writeln!(f, "ELR_EL1: {:#018x}", self.elr_el1)?;
+ writeln!(f, "{}", self.spsr_el1)?;
+ writeln!(f)?;
+ writeln!(f, "General purpose register:")?;
+
+ #[rustfmt::skip]
+ let alternating = |x| -> _ {
+ if x modulo 2 == 0 { " " } else { "\n" }
+ };
+
+ // Print two registers per line.
+ for (i, reg) in self.gpr.iter().enumerate() {
+ write!(f, " x{: <2}: {: >#018x}{}", i, reg, alternating(i))?;
+ }
+ write!(f, " lr : {:#018x}", self.lr)?;
+
+ Ok(())
+ }
+}
//--------------------------------------------------------------------------------------------------
// Arch-public
//--------------------------------------------------------------------------------------------------
+/// Set the exception vector base address register.
+///
+/// # Safety
+///
+/// - The vector table and the symbol `__exception_vector_table_start` from the linker script must
+/// adhere to the alignment and size constraints demanded by the AArch64 spec.
+pub unsafe fn set_vbar_el1() {
+ // Provided by exception.S.
+ extern "C" {
+ static mut __exception_vector_start: u64;
+ }
+ let addr: u64 = &__exception_vector_start as *const _ as u64;
+
+ VBAR_EL1.set(addr);
+
+ // Force VBAR update to complete before next instruction.
+ barrier::isb(barrier::SY);
+}
+
pub trait DaifField {
fn daif_field() -> register::Field<u32, DAIF::Register>;
}
diff -uNr 11_virtual_memory/src/arch/aarch64/exception.S 12_cpu_exceptions_part1/src/arch/aarch64/exception.S
--- 11_virtual_memory/src/arch/aarch64/exception.S
+++ 12_cpu_exceptions_part1/src/arch/aarch64/exception.S
@@ -0,0 +1,133 @@
+// SPDX-License-Identifier: MIT OR Apache-2.0
+//
+// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
+
+/// Call the function provided by parameter `\handler` after saving exception context. Provide the
+/// context as the first parameter to '\handler'.
+.macro CALL_WITH_CONTEXT handler
+ // Make room on the stack for the exception context.
+ sub sp, sp, #16 * 17
+
+ // Store all general purpose registers on the stack.
+ stp x0, x1, [sp, #16 * 0]
+ stp x2, x3, [sp, #16 * 1]
+ stp x4, x5, [sp, #16 * 2]
+ stp x6, x7, [sp, #16 * 3]
+ stp x8, x9, [sp, #16 * 4]
+ stp x10, x11, [sp, #16 * 5]
+ stp x12, x13, [sp, #16 * 6]
+ stp x14, x15, [sp, #16 * 7]
+ stp x16, x17, [sp, #16 * 8]
+ stp x18, x19, [sp, #16 * 9]
+ stp x20, x21, [sp, #16 * 10]
+ stp x22, x23, [sp, #16 * 11]
+ stp x24, x25, [sp, #16 * 12]
+ stp x26, x27, [sp, #16 * 13]
+ stp x28, x29, [sp, #16 * 14]
+
+ // Add the exception link register (ELR_EL1) and the saved program status (SPSR_EL1).
+ mrs x1, ELR_EL1
+ mrs x2, SPSR_EL1
+
+ stp lr, x1, [sp, #16 * 15]
+ str w2, [sp, #16 * 16]
+
+ // x0 is the first argument for the function called through `\handler`.
+ mov x0, sp
+
+ // Call `\handler`.
+ bl \handler
+
+ // After returning from exception handling code, replay the saved context and return via `eret`.
+ b __exception_restore_context
+.endm
+
+.macro FIQ_SUSPEND
+1: wfe
+ b 1b
+.endm
+
+//--------------------------------------------------------------------------------------------------
+// The exception vector table.
+//--------------------------------------------------------------------------------------------------
+.section .exception_vectors, "ax", @progbits
+
+// Align by 2^11 bytes, as demanded by the AArch64 spec. Same as ALIGN(2048) in an ld script.
+.align 11
+
+// Export a symbol for the Rust code to use.
+__exception_vector_start:
+
+// Current exception level with SP_EL0.
+// .org sets the offset relative to section start.
+//
+// It must be ensured that `CALL_WITH_CONTEXT` <= 0x80 bytes.
+.org 0x000
+ CALL_WITH_CONTEXT current_el0_synchronous
+.org 0x080
+ CALL_WITH_CONTEXT current_el0_irq
+.org 0x100
+ FIQ_SUSPEND
+.org 0x180
+ CALL_WITH_CONTEXT current_el0_serror
+
+// Current exception level with SP_ELx, x > 0.
+.org 0x200
+ CALL_WITH_CONTEXT current_elx_synchronous
+.org 0x280
+ CALL_WITH_CONTEXT current_elx_irq
+.org 0x300
+ FIQ_SUSPEND
+.org 0x380
+ CALL_WITH_CONTEXT current_elx_serror
+
+// Lower exception level, aarch64
+.org 0x400
+ CALL_WITH_CONTEXT lower_aarch64_synchronous
+.org 0x480
+ CALL_WITH_CONTEXT lower_aarch64_irq
+.org 0x500
+ FIQ_SUSPEND
+.org 0x580
+ CALL_WITH_CONTEXT lower_aarch64_serror
+
+// Lower exception level, aarch32
+.org 0x600
+ CALL_WITH_CONTEXT lower_aarch32_synchronous
+.org 0x680
+ CALL_WITH_CONTEXT lower_aarch32_irq
+.org 0x700
+ FIQ_SUSPEND
+.org 0x780
+ CALL_WITH_CONTEXT lower_aarch32_serror
+.org 0x800
+
+//--------------------------------------------------------------------------------------------------
+// Helper functions
+//--------------------------------------------------------------------------------------------------
+__exception_restore_context:
+ ldr w19, [sp, #16 * 16]
+ ldp lr, x20, [sp, #16 * 15]
+
+ msr SPSR_EL1, x19
+ msr ELR_EL1, x20
+
+ ldp x0, x1, [sp, #16 * 0]
+ ldp x2, x3, [sp, #16 * 1]
+ ldp x4, x5, [sp, #16 * 2]
+ ldp x6, x7, [sp, #16 * 3]
+ ldp x8, x9, [sp, #16 * 4]
+ ldp x10, x11, [sp, #16 * 5]
+ ldp x12, x13, [sp, #16 * 6]
+ ldp x14, x15, [sp, #16 * 7]
+ ldp x16, x17, [sp, #16 * 8]
+ ldp x18, x19, [sp, #16 * 9]
+ ldp x20, x21, [sp, #16 * 10]
+ ldp x22, x23, [sp, #16 * 11]
+ ldp x24, x25, [sp, #16 * 12]
+ ldp x26, x27, [sp, #16 * 13]
+ ldp x28, x29, [sp, #16 * 14]
+
+ add sp, sp, #16 * 17
+
+ eret
diff -uNr 11_virtual_memory/src/arch/aarch64.rs 12_cpu_exceptions_part1/src/arch/aarch64.rs
--- 11_virtual_memory/src/arch/aarch64.rs
+++ 12_cpu_exceptions_part1/src/arch/aarch64.rs
@@ -106,6 +106,15 @@
}
}
+/// Enable exception handling.
+///
+/// # Safety
+///
+/// - Changes the HW state of the processing element.
+pub unsafe fn enable_exception_handling() {
+ exception::set_vbar_el1();
+}
+
/// Return a reference to an `interface::mm::MMU` implementation.
pub fn mmu() -> &'static impl interface::mm::MMU {
&MMU
diff -uNr 11_virtual_memory/src/bsp/rpi/virt_mem_layout.rs 12_cpu_exceptions_part1/src/bsp/rpi/virt_mem_layout.rs
--- 11_virtual_memory/src/bsp/rpi/virt_mem_layout.rs
+++ 12_cpu_exceptions_part1/src/bsp/rpi/virt_mem_layout.rs
@@ -15,7 +15,7 @@
// BSP-public
//--------------------------------------------------------------------------------------------------
-pub const NUM_MEM_RANGES: usize = 3;
+pub const NUM_MEM_RANGES: usize = 2;
pub static LAYOUT: KernelVirtualLayout<{ NUM_MEM_RANGES }> = KernelVirtualLayout::new(
memory_map::END_INCLUSIVE,
@@ -54,19 +54,6 @@
},
},
RangeDescriptor {
- name: "Remapped Device MMIO",
- virtual_range: || {
- // The last 64 KiB slot in the first 512 MiB
- RangeInclusive::new(0x1FFF_0000, 0x1FFF_FFFF)
- },
- translation: Translation::Offset(memory_map::mmio::BASE + 0x20_0000),
- attribute_fields: AttributeFields {
- mem_attributes: MemAttributes::Device,
- acc_perms: AccessPermissions::ReadWrite,
- execute_never: true,
- },
- },
- RangeDescriptor {
name: "Device MMIO",
virtual_range: || {
RangeInclusive::new(memory_map::mmio::BASE, memory_map::mmio::END_INCLUSIVE)
diff -uNr 11_virtual_memory/src/bsp.rs 12_cpu_exceptions_part1/src/bsp.rs
--- 11_virtual_memory/src/bsp.rs
+++ 12_cpu_exceptions_part1/src/bsp.rs
@@ -4,7 +4,7 @@
//! Conditional exporting of Board Support Packages.
-pub mod driver;
+mod driver;
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
mod rpi;
diff -uNr 11_virtual_memory/src/main.rs 12_cpu_exceptions_part1/src/main.rs
--- 11_virtual_memory/src/main.rs
+++ 12_cpu_exceptions_part1/src/main.rs
@@ -22,6 +22,7 @@
#![allow(incomplete_features)]
#![feature(const_generics)]
#![feature(format_args_nl)]
+#![feature(global_asm)]
#![feature(panic_info_message)]
#![feature(trait_alias)]
#![no_main]
@@ -57,6 +58,8 @@
unsafe fn kernel_init() -> ! {
use interface::mm::MMU;
+ arch::enable_exception_handling();
+
if let Err(string) = arch::mmu().init() {
panic!("MMU: {}", string);
}
@@ -102,13 +105,28 @@
info!("Timer test, spinning for 1 second");
arch::timer().spin_for(Duration::from_secs(1));
- let remapped_uart = unsafe { bsp::driver::PL011Uart::new(0x1FFF_1000) };
- writeln!(
- remapped_uart,
- "[ !!! ] Writing through the remapped UART at 0x1FFF_1000"
- )
- .unwrap();
+ // Cause an exception by accessing a virtual address for which no translation was set up. This
+ // code accesses the address 8 GiB, which is outside the mapped address space.
+ //
+ // For demo purposes, the exception handler will catch the faulting 8 GiB address and allow
+ // execution to continue.
+ info!("");
+ info!("Trying to write to address 8 GiB...");
+ let mut big_addr: u64 = 8 * 1024 * 1024 * 1024;
+ unsafe { core::ptr::read_volatile(big_addr as *mut u64) };
+
+ info!("************************************************");
+ info!("Whoa! We recovered from a synchronous exception!");
+ info!("************************************************");
+ info!("");
+ info!("Let's try again");
+
+ // Now use address 9 GiB. The exception handler won't forgive us this time.
+ info!("Trying to write to address 9 GiB...");
+ big_addr = 9 * 1024 * 1024 * 1024;
+ unsafe { core::ptr::read_volatile(big_addr as *mut u64) };
+ // Will never reach here in this tutorial.
info!("Echoing input now");
loop {
let c = bsp::console().read_char();
```

@ -1,21 +0,0 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Conditional exporting of processor architecture code.
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
mod aarch64;
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
pub use aarch64::*;
/// Architectural privilege level.
#[allow(missing_docs)]
#[derive(PartialEq)]
pub enum PrivilegeLevel {
User,
Kernel,
Hypervisor,
Unknown,
}

@ -1,157 +0,0 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! AArch64.
mod exception;
mod mmu;
pub mod sync;
mod time;
use crate::{bsp, interface};
use cortex_a::{asm, regs::*};
/// The entry of the `kernel` binary.
///
/// The function must be named `_start`, because the linker is looking for this exact name.
///
/// # Safety
///
/// - Linker script must ensure to place this function at `0x80_000`.
#[no_mangle]
pub unsafe extern "C" fn _start() -> ! {
const CORE_MASK: u64 = 0x3;
// Expect the boot core to start in EL2.
if (bsp::BOOT_CORE_ID == MPIDR_EL1.get() & CORE_MASK)
&& (CurrentEL.get() == CurrentEL::EL::EL2.value)
{
el2_to_el1_transition()
} else {
// If not core0, infinitely wait for events.
wait_forever()
}
}
/// Transition from EL2 to EL1.
///
/// # Safety
///
/// - The HW state of EL1 must be prepared in a sound way.
/// - Exception return from EL2 must must continue execution in EL1 with ´runtime_init::init()`.
#[inline(always)]
unsafe fn el2_to_el1_transition() -> ! {
// Enable timer counter registers for EL1.
CNTHCTL_EL2.write(CNTHCTL_EL2::EL1PCEN::SET + CNTHCTL_EL2::EL1PCTEN::SET);
// No offset for reading the counters.
CNTVOFF_EL2.set(0);
// Set EL1 execution state to AArch64.
HCR_EL2.write(HCR_EL2::RW::EL1IsAarch64);
// Set up a simulated exception return.
//
// First, fake a saved program status, where all interrupts were masked and SP_EL1 was used as a
// stack pointer.
SPSR_EL2.write(
SPSR_EL2::D::Masked
+ SPSR_EL2::A::Masked
+ SPSR_EL2::I::Masked
+ SPSR_EL2::F::Masked
+ SPSR_EL2::M::EL1h,
);
// Second, let the link register point to init().
ELR_EL2.set(crate::runtime_init::runtime_init as *const () as u64);
// Set up SP_EL1 (stack pointer), which will be used by EL1 once we "return" to it.
SP_EL1.set(bsp::BOOT_CORE_STACK_START);
// Use `eret` to "return" to EL1. This will result in execution of `reset()` in EL1.
asm::eret()
}
//--------------------------------------------------------------------------------------------------
// Global instances
//--------------------------------------------------------------------------------------------------
static TIMER: time::Timer = time::Timer;
static MMU: mmu::MMU = mmu::MMU;
//--------------------------------------------------------------------------------------------------
// Implementation of the kernel's architecture abstraction code
//--------------------------------------------------------------------------------------------------
pub use asm::nop;
/// Spin for `n` cycles.
pub fn spin_for_cycles(n: usize) {
for _ in 0..n {
asm::nop();
}
}
/// Return a reference to a `interface::time::TimeKeeper` implementation.
pub fn timer() -> &'static impl interface::time::Timer {
&TIMER
}
/// Pause execution on the calling CPU core.
#[inline(always)]
pub fn wait_forever() -> ! {
loop {
asm::wfe()
}
}
/// Enable exception handling.
///
/// # Safety
///
/// - Changes the HW state of the processing element.
pub unsafe fn enable_exception_handling() {
exception::set_vbar_el1();
}
/// Return a reference to an `interface::mm::MMU` implementation.
pub fn mmu() -> &'static impl interface::mm::MMU {
&MMU
}
/// Information about the HW state.
pub mod state {
use crate::arch::PrivilegeLevel;
use cortex_a::regs::*;
/// The processing element's current privilege level.
pub fn current_privilege_level() -> (PrivilegeLevel, &'static str) {
let el = CurrentEL.read_as_enum(CurrentEL::EL);
match el {
Some(CurrentEL::EL::Value::EL2) => (PrivilegeLevel::Hypervisor, "EL2"),
Some(CurrentEL::EL::Value::EL1) => (PrivilegeLevel::Kernel, "EL1"),
Some(CurrentEL::EL::Value::EL0) => (PrivilegeLevel::User, "EL0"),
_ => (PrivilegeLevel::Unknown, "Unknown"),
}
}
/// Print the AArch64 exceptions status.
#[rustfmt::skip]
pub fn print_exception_state() {
use super::{
exception,
exception::{Debug, SError, FIQ, IRQ},
};
use crate::info;
let to_mask_str = |x| -> _ {
if x { "Masked" } else { "Unmasked" }
};
info!(" Debug: {}", to_mask_str(exception::is_masked::<Debug>()));
info!(" SError: {}", to_mask_str(exception::is_masked::<SError>()));
info!(" IRQ: {}", to_mask_str(exception::is_masked::<IRQ>()));
info!(" FIQ: {}", to_mask_str(exception::is_masked::<FIQ>()));
}
}

@ -1,53 +0,0 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Synchronization primitives.
use crate::interface;
use core::cell::UnsafeCell;
//--------------------------------------------------------------------------------------------------
// Arch-public
//--------------------------------------------------------------------------------------------------
/// A pseudo-lock for teaching purposes.
///
/// Used to introduce [interior mutability].
///
/// In contrast to a real Mutex implementation, does not protect against concurrent access to the
/// contained data. This part is preserved for later lessons.
///
/// The lock will only be used as long as it is safe to do so, i.e. as long as the kernel is
/// executing single-threaded, aka only running on a single core with interrupts disabled.
///
/// [interior mutability]: https://doc.rust-lang.org/std/cell/index.html
pub struct NullLock<T: ?Sized> {
data: UnsafeCell<T>,
}
unsafe impl<T: ?Sized + Send> Send for NullLock<T> {}
unsafe impl<T: ?Sized + Send> Sync for NullLock<T> {}
impl<T> NullLock<T> {
/// Wraps `data` into a new `NullLock`.
pub const fn new(data: T) -> NullLock<T> {
NullLock {
data: UnsafeCell::new(data),
}
}
}
//--------------------------------------------------------------------------------------------------
// OS interface implementations
//--------------------------------------------------------------------------------------------------
impl<T> interface::sync::Mutex for &NullLock<T> {
type Data = T;
fn lock<R>(&mut self, f: impl FnOnce(&mut Self::Data) -> R) -> R {
// In a real lock, there would be code encapsulating this line that ensures that this
// mutable reference will ever only be given out once at a time.
f(unsafe { &mut *self.data.get() })
}
}

@ -1,85 +0,0 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Board Support Package for the Raspberry Pi.
mod memory_map;
mod virt_mem_layout;
use super::driver;
use crate::{interface, memory::KernelVirtualLayout};
use core::fmt;
/// Used by `arch` code to find the early boot core.
pub const BOOT_CORE_ID: u64 = 0;
/// The early boot core's stack address.
pub const BOOT_CORE_STACK_START: u64 = 0x80_000;
//--------------------------------------------------------------------------------------------------
// Global BSP driver instances
//--------------------------------------------------------------------------------------------------
static GPIO: driver::GPIO = unsafe { driver::GPIO::new(memory_map::mmio::GPIO_BASE) };
static PL011_UART: driver::PL011Uart =
unsafe { driver::PL011Uart::new(memory_map::mmio::PL011_UART_BASE) };
//--------------------------------------------------------------------------------------------------
// Implementation of the kernel's BSP calls
//--------------------------------------------------------------------------------------------------
/// Board identification.
pub fn board_name() -> &'static str {
#[cfg(feature = "bsp_rpi3")]
{
"Raspberry Pi 3"
}
#[cfg(feature = "bsp_rpi4")]
{
"Raspberry Pi 4"
}
}
/// Return a reference to a `console::All` implementation.
pub fn console() -> &'static impl interface::console::All {
&PL011_UART
}
/// In case of a panic, the panic handler uses this function to take a last shot at printing
/// something before the system is halted.
///
/// # Safety
///
/// - Use only for printing during a panic.
pub unsafe fn panic_console_out() -> impl fmt::Write {
let uart = driver::PanicUart::new(memory_map::mmio::PL011_UART_BASE);
uart.init();
uart
}
/// Return an array of references to all `DeviceDriver` compatible `BSP` drivers.
///
/// # Safety
///
/// The order of devices is the order in which `DeviceDriver::init()` is called.
pub fn device_drivers() -> [&'static dyn interface::driver::DeviceDriver; 2] {
[&GPIO, &PL011_UART]
}
/// BSP initialization code that runs after driver init.
pub fn post_driver_init() {
// Configure PL011Uart's output pins.
GPIO.map_pl011_uart();
}
/// Return the address space size in bytes.
pub const fn addr_space_size() -> usize {
memory_map::END_INCLUSIVE + 1
}
/// Return a reference to the virtual memory layout.
pub fn virt_mem_layout() -> &'static KernelVirtualLayout<{ virt_mem_layout::NUM_MEM_RANGES }> {
&virt_mem_layout::LAYOUT
}

@ -1,27 +0,0 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! The board's memory map.
#[cfg(feature = "bsp_rpi3")]
#[rustfmt::skip]
pub const END_INCLUSIVE: usize = 0x3FFF_FFFF;
#[cfg(feature = "bsp_rpi4")]
#[rustfmt::skip]
pub const END_INCLUSIVE: usize = 0xFFFF_FFFF;
/// Physical devices.
#[rustfmt::skip]
pub mod mmio {
#[cfg(feature = "bsp_rpi3")]
pub const BASE: usize = 0x3F00_0000;
#[cfg(feature = "bsp_rpi4")]
pub const BASE: usize = 0xFE00_0000;
pub const GPIO_BASE: usize = BASE + 0x0020_0000;
pub const PL011_UART_BASE: usize = BASE + 0x0020_1000;
pub const END_INCLUSIVE: usize = super::END_INCLUSIVE;
}

@ -1,147 +0,0 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Trait definitions for coupling `kernel` and `BSP` code.
//!
//! ```
//! +-------------------+
//! | Interface (Trait) |
//! | |
//! +--+-------------+--+
//! ^ ^
//! | |
//! | |
//! +----------+--+ +--+----------+
//! | Kernel code | | BSP Code |
//! | | | |
//! +-------------+ +-------------+
//! ```
/// System console operations.
pub mod console {
use core::fmt;
/// Console write functions.
pub trait Write {
/// Write a single character.
fn write_char(&self, c: char);
/// Write a Rust format string.
fn write_fmt(&self, args: fmt::Arguments) -> fmt::Result;
/// Block execution until the last character has been physically put on the TX wire
/// (draining TX buffers/FIFOs, if any).
fn flush(&self);
}
/// Console read functions.
pub trait Read {
/// Read a single character.
fn read_char(&self) -> char {
' '
}
/// Clear RX buffers, if any.
fn clear(&self);
}
/// Console statistics.
pub trait Statistics {
/// Return the number of characters written.
fn chars_written(&self) -> usize {
0
}
/// Return the number of characters read.
fn chars_read(&self) -> usize {
0
}
}
/// Trait alias for a full-fledged console.
pub trait All = Write + Read + Statistics;
}
/// Synchronization primitives.
pub mod sync {
/// Any object implementing this trait guarantees exclusive access to the data contained within
/// the mutex for the duration of the lock.
///
/// The trait follows the [Rust embedded WG's
/// proposal](https://github.com/korken89/wg/blob/master/rfcs/0377-mutex-trait.md) and therefore
/// provides some goodness such as [deadlock
/// prevention](https://github.com/korken89/wg/blob/master/rfcs/0377-mutex-trait.md#design-decisions-and-compatibility).
///
/// # Example
///
/// Since the lock function takes an `&mut self` to enable deadlock-prevention, the trait is
/// best implemented **for a reference to a container struct**, and has a usage pattern that
/// might feel strange at first:
///
/// ```
/// static MUT: Mutex<RefCell<i32>> = Mutex::new(RefCell::new(0));
///
/// fn foo() {
/// let mut r = &MUT; // Note that r is mutable
/// r.lock(|data| *data += 1);
/// }
/// ```
pub trait Mutex {
/// Type of data encapsulated by the mutex.
type Data;
/// Creates a critical section and grants temporary mutable access to the encapsulated data.
fn lock<R>(&mut self, f: impl FnOnce(&mut Self::Data) -> R) -> R;
}
}
/// Driver interfaces.
pub mod driver {
/// Driver result type, e.g. for indicating successful driver init.
pub type Result = core::result::Result<(), ()>;
/// Device Driver functions.
pub trait DeviceDriver {
/// Return a compatibility string for identifying the driver.
fn compatible(&self) -> &str;
/// Called by the kernel to bring up the device.
fn init(&self) -> Result {
Ok(())
}
}
}
/// Timekeeping interfaces.
pub mod time {
use core::time::Duration;
/// Timer functions.
pub trait Timer {
/// The timer's resolution.
fn resolution(&self) -> Duration;
/// The uptime since power-on of the device.
///
/// This includes time consumed by firmware and bootloaders.
fn uptime(&self) -> Duration;
/// Spin for a given duration.
fn spin_for(&self, duration: Duration);
}
}
/// Memory Management interfaces.
pub mod mm {
/// MMU functions.
pub trait MMU {
/// Called by the kernel during early init. Supposed to take the page tables from the
/// `BSP`-supplied `virt_mem_layout()` and install/activate them for the respective MMU.
///
/// # Safety
///
/// - Changes the HW's global state.
unsafe fn init(&self) -> Result<(), &'static str>;
}
}

@ -1,135 +0,0 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
// Rust embedded logo for `make doc`.
#![doc(html_logo_url = "https://git.io/JeGIp")]
//! The `kernel`
//!
//! The `kernel` is composed by glueing together code from
//!
//! - [Hardware-specific Board Support Packages] (`BSPs`).
//! - [Architecture-specific code].
//! - HW- and architecture-agnostic `kernel` code.
//!
//! using the [`kernel::interface`] traits.
//!
//! [Hardware-specific Board Support Packages]: bsp/index.html
//! [Architecture-specific code]: arch/index.html
//! [`kernel::interface`]: interface/index.html
#![allow(incomplete_features)]
#![feature(const_generics)]
#![feature(format_args_nl)]
#![feature(global_asm)]
#![feature(panic_info_message)]
#![feature(trait_alias)]
#![no_main]
#![no_std]
// Conditionally includes the selected `architecture` code, which provides the `_start()` function,
// the first function to run.
mod arch;
// `_start()` then calls `runtime_init()`, which on completion, jumps to `kernel_init()`.
mod runtime_init;
// Conditionally includes the selected `BSP` code.
mod bsp;
mod interface;
mod memory;
mod panic_wait;
mod print;
/// Early init code.
///
/// Concerned with with initializing `BSP` and `arch` parts.
///
/// # Safety
///
/// - Only a single core must be active and running this function.
/// - The init calls in this function must appear in the correct order:
/// - Virtual memory must be activated before the device drivers.
/// - Without it, any atomic operations, e.g. the yet-to-be-introduced spinlocks in the device
/// drivers (which currently employ NullLocks instead of spinlocks), will fail to work on
/// the RPi SoCs.
unsafe fn kernel_init() -> ! {
use interface::mm::MMU;
arch::enable_exception_handling();
if let Err(string) = arch::mmu().init() {
panic!("MMU: {}", string);
}
for i in bsp::device_drivers().iter() {
if let Err(()) = i.init() {
panic!("Error loading driver: {}", i.compatible())
}
}
bsp::post_driver_init();
// println! is usable from here on.
// Transition from unsafe to safe.
kernel_main()
}
/// The main function running after the early init.
fn kernel_main() -> ! {
use core::time::Duration;
use interface::{console::All, time::Timer};
info!("Booting on: {}", bsp::board_name());
info!("MMU online. Special regions:");
bsp::virt_mem_layout().print_layout();
let (_, privilege_level) = arch::state::current_privilege_level();
info!("Current privilege level: {}", privilege_level);
info!("Exception handling state:");
arch::state::print_exception_state();
info!(
"Architectural timer resolution: {} ns",
arch::timer().resolution().as_nanos()
);
info!("Drivers loaded:");
for (i, driver) in bsp::device_drivers().iter().enumerate() {
info!(" {}. {}", i + 1, driver.compatible());
}
info!("Timer test, spinning for 1 second");
arch::timer().spin_for(Duration::from_secs(1));
// Cause an exception by accessing a virtual address for which no translation was set up. This
// code accesses the address 8 GiB, which is outside the mapped address space.
//
// For demo purposes, the exception handler will catch the faulting 8 GiB address and allow
// execution to continue.
info!("");
info!("Trying to write to address 8 GiB...");
let mut big_addr: u64 = 8 * 1024 * 1024 * 1024;
unsafe { core::ptr::read_volatile(big_addr as *mut u64) };
info!("************************************************");
info!("Whoa! We recovered from a synchronous exception!");
info!("************************************************");
info!("");
info!("Let's try again");
// Now use address 9 GiB. The exception handler won't forgive us this time.
info!("Trying to write to address 9 GiB...");
big_addr = 9 * 1024 * 1024 * 1024;
unsafe { core::ptr::read_volatile(big_addr as *mut u64) };
// Will never reach here in this tutorial.
info!("Echoing input now");
loop {
let c = bsp::console().read_char();
bsp::console().write_char(c);
}
}

@ -21,7 +21,7 @@ ifeq ($(BSP),rpi3)
QEMU_RELEASE_ARGS = -serial stdio -display none
OPENOCD_ARG = -f /openocd/tcl/interface/ftdi/olimex-arm-usb-tiny-h.cfg -f /openocd/rpi3.cfg
JTAG_BOOT_IMAGE = jtag_boot_rpi3.img
LINKER_FILE = src/bsp/rpi/link.ld
LINKER_FILE = src/bsp/raspberrypi/link.ld
RUSTC_MISC_ARGS = -C target-cpu=cortex-a53
else ifeq ($(BSP),rpi4)
TARGET = aarch64-unknown-none-softfloat
@ -31,7 +31,7 @@ else ifeq ($(BSP),rpi4)
# QEMU_RELEASE_ARGS = -serial stdio -display none
OPENOCD_ARG = -f /openocd/tcl/interface/ftdi/olimex-arm-usb-tiny-h.cfg -f /openocd/rpi4.cfg
JTAG_BOOT_IMAGE = jtag_boot_rpi4.img
LINKER_FILE = src/bsp/rpi/link.ld
LINKER_FILE = src/bsp/raspberrypi/link.ld
RUSTC_MISC_ARGS = -C target-cpu=cortex-a72
endif
@ -74,8 +74,7 @@ $(OUTPUT): $(CARGO_OUTPUT)
$(OBJCOPY_CMD) $< $(OUTPUT)
doc:
cargo xdoc --target=$(TARGET) --features bsp_$(BSP) --document-private-items
xdg-open target/$(TARGET)/doc/kernel/index.html
cargo xdoc --target=$(TARGET) --features bsp_$(BSP) --document-private-items --open
ifeq ($(QEMU_MACHINE_TYPE),)
qemu:

@ -0,0 +1,479 @@
# Tutorial 12 - Exceptions Part 1: Groundwork
## tl;dr
We lay the groundwork for all the architectural `CPU exceptions`. For now, only print an elaborate
system state through a `panic!` call, and halt execution; This will help finding bugs during
development and runtime.
For demo purposes, MMU `page faults` are used to demonstrate (i) returning from an exception and
(ii) the default `panic!` behavior.
## Table of Contents
- [Introduction](#introduction)
- [Exception Types](#exception-types)
- [Exception entry](#exception-entry)
* [Exception Vectors](#exception-vectors)
- [Handler Code and Offsets](#handler-code-and-offsets)
- [Rust and Assembly Implementation](#rust-and-assembly-implementation)
* [Context Save and Restore](#context-save-and-restore)
* [Exception Vector Table](#exception-vector-table)
* [Implementing handlers](#implementing-handlers)
- [Causing an Exception - Testing the Code](#causing-an-exception---testing-the-code)
- [Test it](#test-it)
- [Diff to previous](#diff-to-previous)
## Introduction
Now that we are executing in `EL1`, and have activated the `MMU`, time is due for implementing `CPU
exceptions`. For now, we only set up a scaffold with very basic functionality that will help us to
find bugs along the way. A follow-up `Interrupt` tutorial in the future will continue the work we
start here.
Please note that this tutorial is specific to the `AArch64` architecture. It does not contain any
generic exception handling code yet.
## Exception Types
In `AArch64`, it is differentiated between four types of exceptions. These are:
- Synchronous
- For example, a `data abort` (e.g. `page fault`) or a `system call`. They happen in direct
consequence of executing a certain instruction, hence _synchronously_.
- Interrupt Request (`IRQ`)
- For example, an external device, like a timer, is asserting a physical interrupt line. IRQs
happen _asynchronously_.
- Fast Interrupt Request (`FIQ`)
- These are basically interrupts that take priority over normal IRQs and have some more traits
that make them suitable to implement super-fast processing. However, this is out of scope for
this tutorial. For the sake of keeping these tutorials compact and concise, we will more or less
ignore FIQs and only implement a dummy handler that would halt the CPU core.
- System Error (`SError`)
- Like IRQs, SErrors happen asynchronously and are technically more or less the same. They are
intended to signal rather fatal errors in the system, e.g. if a transaction times out on the
`SoC` interconnect. They are very implementation specific and it is up to the SoC vendor to
decide which events are delivered as SErrors instead of normal IRQs.
## Exception entry
I recommend to read pages 1874-1876 of the [ARMv8 Architecture Reference Manual][ARMv8_Manual] to
understand the mechanisms of taking an exception.
Here's an excerpt of important features for this tutorial:
- Exception entry moves the processor to the same or a higher `Exception Level`, but never to a
lower `EL`.
- The program status is saved in the `SPSR_ELx` register at the target `EL`.
- The preferred return address is saved in the `ELR_ELx` register.
- "Preferred" here means that `ELR_ELx` may hold the instruction address of the instructions that
caused the exception (`synchronous case`) or the first instruction that did not complete due to
an `asynchronous` exception. Details in Chapter D1.10.1 of the [ARMv8 Architecture Reference
Manual][ARMv8_Manual].
- All kinds of exceptions are turned off upon taking an exception, so that by default, exception
handlers can not get interrupted themselves.
- Taking an exception will select the dedicated stack pointer of the target `EL`.
- For example, if an exception in `EL0` is taken, the Stack Pointer Select register `SPSel` will
switch from `0` to `1`, meaning that `SP_EL1` will be used by the exception vector code unless
you explicitly change it back to `SP_EL0`.
### Exception Vectors
`AArch64` has a total of `16` exception vectors. There is one for each of the four kinds that were
introduced already, and additionally, it is taken into account _where_ the exception was taken from
and what the circumstances were.
Here is a copy of the decision table as shown in Chapter D1.10.2 of the [ARMv8 Architecture
Reference Manual][ARMv8_Manual]:
[ARMv8_Manual]: https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
<table>
<thead>
<tr>
<th rowspan=2>Exception taken from </th>
<th colspan=4>Offset for exception type</th>
</tr>
<tr>
<th>Synchronous</th>
<th>IRQ or vIRQ</th>
<th>FIQ or vFIQ</th>
<th>SError or vSError</th>
</tr>
</thead>
<tbody>
<tr>
<td width="40%">Current Exception level with SP_EL0.</td>
<td align="center">0x000</td>
<td align="center">0x080</td>
<td align="center">0x100</td>
<td align="center">0x180</td>
</tr>
<tr>
<td>Current Exception level with SP_ELx, x>0.</td>
<td align="center">0x200</td>
<td align="center">0x280</td>
<td align="center">0x300</td>
<td align="center">0x380</td>
</tr>
<tr>
<td>Lower Exception level, where the implemented level immediately lower than the target level is using AArch64.</td>
<td align="center">0x400</td>
<td align="center">0x480</td>
<td align="center">0x500</td>
<td align="center">0x580</td>
</tr>
<tr>
<td>Lower Exception level, where the implemented level immediately lower than the target level is using AArch32.</td>
<td align="center">0x600</td>
<td align="center">0x680</td>
<td align="center">0x700</td>
<td align="center">0x780</td>
</tr>
</tbody>
</table>
Since our kernel runs in `EL1`, using `SP_EL1`, if we'd cause a synchronous exception, the exception
vector at offset `0x200` would be executed. But what does that even mean?
## Handler Code and Offsets
In many architectures, Operating Systems register their exception handlers (aka vectors) by
compiling an architecturally defined data structure that stores function pointers to the different
handlers. This can be as simple as an ordinary array of function pointers. The `base address` of
this data structure is then stored into a special purpose register so that the CPU can branch to the
respective handler function upon taking an exception. The classic `x86_64` architecture follows this
principle, for example.
In `AArch64`, it is a bit different. Here, we have the special purpose register as well, called
`VBAR_EL1`: Vector Base Address Register.
However, it does not store the base address of an array of function pointers, but the base address
of a **memory location that contains code** for the 16 handlers, one handler back-to-back after the
other. Each handler can take a maximum space of `0x80` bytes, aka `128` bytes. That's why the table
above shows `offsets`: To indicate at which offset a certain handler starts.
Of course, you are not obliged to cram all your handler code into only 128 bytes. You are free to
branch off to any other functions at any time. Actually, that is needed in most cases anyways,
because the context-saving code alone would take up most of the available space (you'll learn what
context saving is shortly).
Additionally, there is a requirement that the `Vector Base Address` is aligned to `0x800` aka `2048`
bytes.
## Rust and Assembly Implementation
The implementation uses a mix of `Rust` and `Assembly` code.
### Context Save and Restore
Exception vectors, just like any other code, use a bunch of commonly shared processor resources.
Most of all, the set of `General Purpose Registers` (GPRs) that each core in `AArch64` provides
(`x0`-`x30`).
In order to not taint these registers when executing exception vector code, it is general practice
to save these shared resources in memory (the stack, to be precise) as the very first action. This
is commonly described as *saving the context*. Exception vector code can then use the shared
resources in its own code without bothering, and as a last action before returning from exception
handling code, restore the context, so that the processor can continue where it left off before
taking the exception.
Context save and restore is one of the few places in system software where it is strongly advised to
to use some hand-crafted assembly. Introducing `exception.S`:
```asm
/// Call the function provided by parameter `\handler` after saving the exception context. Provide
/// the context as the first parameter to '\handler'.
.macro CALL_WITH_CONTEXT handler
// Make room on the stack for the exception context.
sub sp, sp, #16 * 17
// Store all general purpose registers on the stack.
stp x0, x1, [sp, #16 * 0]
stp x2, x3, [sp, #16 * 1]
stp x4, x5, [sp, #16 * 2]
stp x6, x7, [sp, #16 * 3]
stp x8, x9, [sp, #16 * 4]
stp x10, x11, [sp, #16 * 5]
stp x12, x13, [sp, #16 * 6]
stp x14, x15, [sp, #16 * 7]
stp x16, x17, [sp, #16 * 8]
stp x18, x19, [sp, #16 * 9]
stp x20, x21, [sp, #16 * 10]
stp x22, x23, [sp, #16 * 11]
stp x24, x25, [sp, #16 * 12]
stp x26, x27, [sp, #16 * 13]
stp x28, x29, [sp, #16 * 14]
// Add the exception link register (ELR_EL1) and the saved program status (SPSR_EL1).
mrs x1, ELR_EL1
mrs x2, SPSR_EL1
stp lr, x1, [sp, #16 * 15]
str w2, [sp, #16 * 16]
// x0 is the first argument for the function called through `\handler`.
mov x0, sp
// Call `\handler`.
bl \handler
// After returning from exception handling code, replay the saved context and return via `eret`.
b __exception_restore_context
.endm
```
First, a macro for saving the context is defined. It eventually jumps to follow-up handler code, and
finally restores the context. In advance, we reserve space on the stack for the context. That is,
the 30 `GPRs`, the `link register`, the `saved program status` and the `exception link register`
(holding the preferred return address). Afterwards, we store those registers, save the current stack
address in `x0` and branch off to follow-up handler-code, whose function name is supplied as an
argument to the macro (`\handler`).
The handler code will be written in Rust, but use the platform's `C` ABI. This way, we can define a
function signature that has a pointer to the context-data on the stack as its first argument, and
know that this argument is expected to be in the `x0` register. We need to use the `C` ABI here
because `Rust` has no stable convention ([yet](https://github.com/rust-lang/rfcs/issues/600)).
### Exception Vector Table
Next, we craft the exception vector table:
```asm
.section .exception_vectors, "ax", @progbits
// Align by 2^11 bytes, as demanded by ARMv8-A. Same as ALIGN(2048) in an ld script.
.align 11
// Export a symbol for the Rust code to use.
__exception_vector_start:
// Current exception level with SP_EL0.
//
// .org sets the offset relative to section start.
//
// # Safety
//
// - It must be ensured that `CALL_WITH_CONTEXT` <= 0x80 bytes.
.org 0x000
CALL_WITH_CONTEXT current_el0_synchronous
.org 0x080
CALL_WITH_CONTEXT current_el0_irq
.org 0x100
FIQ_SUSPEND
.org 0x180
CALL_WITH_CONTEXT current_el0_serror
// Current exception level with SP_ELx, x > 0.
.org 0x200
CALL_WITH_CONTEXT current_elx_synchronous
.org 0x280
CALL_WITH_CONTEXT current_elx_irq
.org 0x300
FIQ_SUSPEND
.org 0x380
CALL_WITH_CONTEXT current_elx_serror
[...]
```
Note how each vector starts at the required offset from the section start using the `.org`
directive. Each macro call introduces an explicit handler function name, which is implemented in
`Rust` in `exception.rs`.
### Implementing handlers
The file `exception.rs` first defines a `struct` of the exception context that is stored on the
stack by the assembly code:
```rust
/// The exception context as it is stored on the stack on exception entry.
#[repr(C)]
struct ExceptionContext {
/// General Purpose Registers.
gpr: [u64; 30],
/// The link register, aka x30.
lr: u64,
/// Exception link register. The program counter at the time the exception happened.
elr_el1: u64,
/// Saved program status.
spsr_el1: SpsrEL1,
}
```
The handlers take a `struct ExceptionContext` argument. Since we do not plan to implement handlers
for each exception yet, a default handler is provided:
```rust
/// Print verbose information about the exception and the panic.
fn default_exception_handler(e: &ExceptionContext) {
panic!(
"\n\nCPU Exception!\n\
FAR_EL1: {:#018x}\n\
{}\n\
{}",
FAR_EL1.get(),
EsrEL1 {},
e
);
}
```
The actual handlers referenced from the assembly can now branch to it for the time being, e.g.:
```rust
#[no_mangle]
unsafe extern "C" fn current_el0_synchronous(e: &mut ExceptionContext) {
default_exception_handler(e);
}
```
## Causing an Exception - Testing the Code
We want to see two cases in action:
1. How taking, handling and returning from an exception works.
2. How the `panic!` print for unhandled exceptions looks like.
So after setting up exceptions in `main.rs` by calling
```rust
exception::handling_init();
```
we cause a data abort exception by reading from memory address `8 GiB`:
```rust
// Cause an exception by accessing a virtual address for which no translation was set up. This
// code accesses the address 8 GiB, which is outside the mapped address space.
//
// For demo purposes, the exception handler will catch the faulting 8 GiB address and allow
// execution to continue.
info!("");
info!("Trying to write to address 8 GiB...");
let mut big_addr: u64 = 8 * 1024 * 1024 * 1024;
unsafe { core::ptr::read_volatile(big_addr as *mut u64) };
```
This triggers our exception code, because we try to read from a virtual address for which no mapping
has been installed. Remember, we only installed identity-mapped page tables for the first `1 GiB`
(RPi3) or `4 GiB` (RPi4) of address space in the previous tutorial.
To survive this exception, the respective handler has a special demo case:
```rust
#[no_mangle]
unsafe extern "C" fn current_elx_synchronous(e: &mut ExceptionContext) {
let far_el1 = FAR_EL1.get();
// This catches the demo case for this tutorial. If the fault address happens to be 8 GiB,
// advance the exception link register for one instruction, so that execution can continue.
if far_el1 == 8 * 1024 * 1024 * 1024 {
e.elr_el1 += 4;
asm::eret()
}
default_exception_handler(e);
}
```
It checks if the faulting address equals `8 GiB`, and if so, advances the copy of the `ELR` by 4,
which makes it point to the next instruction after the instruction that caused the exception. When
this handler returns, execution continues in the assembly macro we introduced before. The macro has
only one more line left: `b __exception_restore_context`, which jumps to an assembly function that
plays back our saved context before finally executing `eret` to return from the exception.
This will kick us back into `main.rs`. But we also want to see the `panic!` print.
Therefore, a second read is done, this time from address `9 GiB`. A case which the handler will not
catch, eventually triggering the `panic!` call from the default handler.
## Test it
Emphasis on the events at timestamps > `4.xxxxxx`.
```console
$ make chainboot
[...]
Minipush 1.0
[MP] ⏳ Waiting for /dev/ttyUSB0
[MP] ✅ Connected
__ __ _ _ _ _
| \/ (_)_ _ (_) | ___ __ _ __| |
| |\/| | | ' \| | |__/ _ \/ _` / _` |
|_| |_|_|_||_|_|____\___/\__,_\__,_|
Raspberry Pi 3
[ML] Requesting binary
[MP] ⏩ Pushing 64 KiB ========================================🦀 100% 32 KiB/s Time: 00:00:02
[ML] Loaded! Executing the payload now
[ 3.006343] Booting on: Raspberry Pi 3
[ 3.007428] MMU online. Special regions:
[ 3.009339] 0x00080000 - 0x0008ffff | 64 KiB | C RO PX | Kernel code and RO data
[ 3.013422] 0x3f000000 - 0x4000ffff | 16 MiB | Dev RW PXN | Device MMIO
[ 3.016985] Current privilege level: EL1
[ 3.018895] Exception handling state:
[ 3.020676] Debug: Masked
[ 3.022240] SError: Masked
[ 3.023804] IRQ: Masked
[ 3.025368] FIQ: Masked
[ 3.026931] Architectural timer resolution: 52 ns
[ 3.029234] Drivers loaded:
[ 3.030580] 1. BCM GPIO
[ 3.032014] 2. BCM PL011 UART
[ 3.033708] Timer test, spinning for 1 second
[ 4.035837]
[ 4.035841] Trying to write to address 8 GiB...
[ 4.038006] ************************************************
[ 4.040785] Whoa! We recovered from a synchronous exception!
[ 4.043565] ************************************************
[ 4.046345]
[ 4.047040] Let's try again
[ 4.048387] Trying to write to address 9 GiB...
Kernel panic:
CPU Exception!
FAR_EL1: 0x0000000240000000
ESR_EL1: 0x96000004
Exception Class (EC) : 0x25 - Data Abort, current EL
Instr Specific Syndrome (ISS): 0x4
ELR_EL1: 0x0000000000080db4
SPSR_EL1: 0x600003c5
Flags:
Negative (N): Not set
Zero (Z): Set
Carry (C): Set
Overflow (V): Not set
Exception handling state:
Debug (D): Masked
SError (A): Masked
IRQ (I): Masked
FIQ (F): Masked
Illegal Execution State (IL): Not set
General purpose register:
x0 : 0x0000000000000000 x1 : 0x00000000000858f6
x2 : 0x0000000000000026 x3 : 0x0000000000082a0c
x4 : 0x000000000007fc7c x5 : 0x0000000000000003
x6 : 0x0000000000000000 x7 : 0x7f91bc052b2b0208
x8 : 0x0000000240000000 x9 : 0x00000000000858f6
x10: 0x000000000000041d x11: 0x000000003f201000
x12: 0x0000000000000019 x13: 0x000000000007fc7d
x14: 0x000000000007fdc8 x15: 0x0000000000000040
x16: 0x0000000000000000 x17: 0x0000000000000040
x18: 0x9e06782800000028 x19: 0x000000003b9aca00
x20: 0x00000000000003e8 x21: 0x0000000000082f58
x22: 0x00000000000830cc x23: 0x0000000000090008
x24: 0x00000000000f4240 x25: 0x0000000000085248
x26: 0x00000000000856e0 x27: 0x00000000000857c0
x28: 0x00000000000830cc x29: 0x0000000000085530
lr : 0x0000000000080da8
```
## Diff to previous

@ -0,0 +1,97 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Architectural processor code.
use crate::{bsp, cpu};
use cortex_a::{asm, regs::*};
//--------------------------------------------------------------------------------------------------
// Boot Code
//--------------------------------------------------------------------------------------------------
/// The entry of the `kernel` binary.
///
/// The function must be named `_start`, because the linker is looking for this exact name.
///
/// # Safety
///
/// - Linker script must ensure to place this function at `0x80_000`.
#[naked]
#[no_mangle]
pub unsafe extern "C" fn _start() -> ! {
// Expect the boot core to start in EL2.
if (bsp::cpu::BOOT_CORE_ID == cpu::smp::core_id())
&& (CurrentEL.get() == CurrentEL::EL::EL2.value)
{
el2_to_el1_transition()
} else {
// If not core0, infinitely wait for events.
wait_forever()
}
}
/// Transition from EL2 to EL1.
///
/// # Safety
///
/// - The HW state of EL1 must be prepared in a sound way.
/// - Exception return from EL2 must must continue execution in EL1 with
/// `runtime_init::runtime_init()`.
#[inline(always)]
unsafe fn el2_to_el1_transition() -> ! {
use crate::runtime_init;
// Enable timer counter registers for EL1.
CNTHCTL_EL2.write(CNTHCTL_EL2::EL1PCEN::SET + CNTHCTL_EL2::EL1PCTEN::SET);
// No offset for reading the counters.
CNTVOFF_EL2.set(0);
// Set EL1 execution state to AArch64.
HCR_EL2.write(HCR_EL2::RW::EL1IsAarch64);
// Set up a simulated exception return.
//
// First, fake a saved program status where all interrupts were masked and SP_EL1 was used as a
// stack pointer.
SPSR_EL2.write(
SPSR_EL2::D::Masked
+ SPSR_EL2::A::Masked
+ SPSR_EL2::I::Masked
+ SPSR_EL2::F::Masked
+ SPSR_EL2::M::EL1h,
);
// Second, let the link register point to runtime_init().
ELR_EL2.set(runtime_init::runtime_init as *const () as u64);
// Set up SP_EL1 (stack pointer), which will be used by EL1 once we "return" to it.
SP_EL1.set(bsp::cpu::BOOT_CORE_STACK_START);
// Use `eret` to "return" to EL1. This results in execution of runtime_init() in EL1.
asm::eret()
}
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
pub use asm::nop;
/// Spin for `n` cycles.
#[inline(always)]
pub fn spin_for_cycles(n: usize) {
for _ in 0..n {
asm::nop();
}
}
/// Pause execution on the core.
#[inline(always)]
pub fn wait_forever() -> ! {
loop {
asm::wfe()
}
}

@ -0,0 +1,22 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Architectural symmetric multiprocessing.
use cortex_a::regs::*;
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
/// Return the executing core's id.
#[inline(always)]
pub fn core_id<T>() -> T
where
T: From<u8>,
{
const CORE_MASK: u64 = 0b11;
T::from((MPIDR_EL1.get() & CORE_MASK) as u8)
}

@ -2,8 +2,8 @@
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
/// Call the function provided by parameter `\handler` after saving exception context. Provide the
/// context as the first parameter to '\handler'.
/// Call the function provided by parameter `\handler` after saving the exception context. Provide
/// the context as the first parameter to '\handler'.
.macro CALL_WITH_CONTEXT handler
// Make room on the stack for the exception context.
sub sp, sp, #16 * 17
@ -52,16 +52,19 @@
//--------------------------------------------------------------------------------------------------
.section .exception_vectors, "ax", @progbits
// Align by 2^11 bytes, as demanded by the AArch64 spec. Same as ALIGN(2048) in an ld script.
// Align by 2^11 bytes, as demanded by ARMv8-A. Same as ALIGN(2048) in an ld script.
.align 11
// Export a symbol for the Rust code to use.
__exception_vector_start:
// Current exception level with SP_EL0.
//
// .org sets the offset relative to section start.
//
// It must be ensured that `CALL_WITH_CONTEXT` <= 0x80 bytes.
// # Safety
//
// - It must be ensured that `CALL_WITH_CONTEXT` <= 0x80 bytes.
.org 0x000
CALL_WITH_CONTEXT current_el0_synchronous
.org 0x080
@ -81,7 +84,7 @@ __exception_vector_start:
.org 0x380
CALL_WITH_CONTEXT current_elx_serror
// Lower exception level, aarch64
// Lower exception level, AArch64
.org 0x400
CALL_WITH_CONTEXT lower_aarch64_synchronous
.org 0x480
@ -91,7 +94,7 @@ __exception_vector_start:
.org 0x580
CALL_WITH_CONTEXT lower_aarch64_serror
// Lower exception level, aarch32
// Lower exception level, AArch32
.org 0x600
CALL_WITH_CONTEXT lower_aarch32_synchronous
.org 0x680
@ -105,6 +108,8 @@ __exception_vector_start:
//--------------------------------------------------------------------------------------------------
// Helper functions
//--------------------------------------------------------------------------------------------------
.section .text
__exception_restore_context:
ldr w19, [sp, #16 * 16]
ldp lr, x20, [sp, #16 * 15]

@ -2,7 +2,7 @@
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Exception handling.
//! Architectural synchronous and asynchronous exception handling.
use core::fmt;
use cortex_a::{asm, barrier, regs::*};
@ -11,6 +11,10 @@ use register::InMemoryRegister;
// Assembly counterpart to this file.
global_asm!(include_str!("exception.S"));
//--------------------------------------------------------------------------------------------------
// Private Definitions
//--------------------------------------------------------------------------------------------------
/// Wrapper struct for memory copy of SPSR_EL1.
#[repr(transparent)]
struct SpsrEL1(InMemoryRegister<u32, SPSR_EL1::Register>);
@ -18,13 +22,16 @@ struct SpsrEL1(InMemoryRegister<u32, SPSR_EL1::Register>);
/// The exception context as it is stored on the stack on exception entry.
#[repr(C)]
struct ExceptionContext {
// General Purpose Registers.
/// General Purpose Registers.
gpr: [u64; 30],
// The link register, aka x30.
/// The link register, aka x30.
lr: u64,
// Exception link register. The program counter at the time the exception happened.
/// Exception link register. The program counter at the time the exception happened.
elr_el1: u64,
// Saved program status.
/// Saved program status.
spsr_el1: SpsrEL1,
}
@ -32,7 +39,7 @@ struct ExceptionContext {
struct EsrEL1;
//--------------------------------------------------------------------------------------------------
// Exception vector implementation
// Private Code
//--------------------------------------------------------------------------------------------------
/// Print verbose information about the exception and the panic.
@ -48,9 +55,9 @@ fn default_exception_handler(e: &ExceptionContext) {
);
}
//--------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Current, EL0
//--------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------
#[no_mangle]
unsafe extern "C" fn current_el0_synchronous(e: &mut ExceptionContext) {
@ -67,11 +74,10 @@ unsafe extern "C" fn current_el0_serror(e: &mut ExceptionContext) {
default_exception_handler(e);
}
//--------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Current, ELx
//--------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------
/// Asynchronous exception taken from the current EL, using SP of the current EL.
#[no_mangle]
unsafe extern "C" fn current_elx_synchronous(e: &mut ExceptionContext) {
let far_el1 = FAR_EL1.get();
@ -97,9 +103,9 @@ unsafe extern "C" fn current_elx_serror(e: &mut ExceptionContext) {
default_exception_handler(e);
}
//--------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Lower, AArch64
//--------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------
#[no_mangle]
unsafe extern "C" fn lower_aarch64_synchronous(e: &mut ExceptionContext) {
@ -116,9 +122,9 @@ unsafe extern "C" fn lower_aarch64_serror(e: &mut ExceptionContext) {
default_exception_handler(e);
}
//--------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Lower, AArch32
//--------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------
#[no_mangle]
unsafe extern "C" fn lower_aarch32_synchronous(e: &mut ExceptionContext) {
@ -135,9 +141,9 @@ unsafe extern "C" fn lower_aarch32_serror(e: &mut ExceptionContext) {
default_exception_handler(e);
}
//--------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Pretty printing
//--------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------
/// Human readable ESR_EL1.
#[rustfmt::skip]
@ -224,16 +230,30 @@ impl fmt::Display for ExceptionContext {
}
//--------------------------------------------------------------------------------------------------
// Arch-public
// Public Code
//--------------------------------------------------------------------------------------------------
use crate::exception::PrivilegeLevel;
/// The processing element's current privilege level.
pub fn current_privilege_level() -> (PrivilegeLevel, &'static str) {
let el = CurrentEL.read_as_enum(CurrentEL::EL);
match el {
Some(CurrentEL::EL::Value::EL2) => (PrivilegeLevel::Hypervisor, "EL2"),
Some(CurrentEL::EL::Value::EL1) => (PrivilegeLevel::Kernel, "EL1"),
Some(CurrentEL::EL::Value::EL0) => (PrivilegeLevel::User, "EL0"),
_ => (PrivilegeLevel::Unknown, "Unknown"),
}
}
/// Set the exception vector base address register.
/// Init exception handling by setting the exception vector base address register.
///
/// # Safety
///
/// - Changes the HW state of the executing core.
/// - The vector table and the symbol `__exception_vector_table_start` from the linker script must
/// adhere to the alignment and size constraints demanded by the AArch64 spec.
pub unsafe fn set_vbar_el1() {
/// adhere to the alignment and size constraints demanded by the ARMv8-A Architecture Reference
/// Manual.
pub unsafe fn handling_init() {
// Provided by exception.S.
extern "C" {
static mut __exception_vector_start: u64;
@ -245,40 +265,3 @@ pub unsafe fn set_vbar_el1() {
// Force VBAR update to complete before next instruction.
barrier::isb(barrier::SY);
}
pub trait DaifField {
fn daif_field() -> register::Field<u32, DAIF::Register>;
}
pub struct Debug;
pub struct SError;
pub struct IRQ;
pub struct FIQ;
impl DaifField for Debug {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::D
}
}
impl DaifField for SError {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::A
}
}
impl DaifField for IRQ {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::I
}
}
impl DaifField for FIQ {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::F
}
}
pub fn is_masked<T: DaifField>() -> bool {
DAIF.is_set(T::daif_field())
}

@ -0,0 +1,71 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Architectural asynchronous exception handling.
use cortex_a::regs::*;
//--------------------------------------------------------------------------------------------------
// Private Definitions
//--------------------------------------------------------------------------------------------------
trait DaifField {
fn daif_field() -> register::Field<u32, DAIF::Register>;
}
struct Debug;
struct SError;
struct IRQ;
struct FIQ;
//--------------------------------------------------------------------------------------------------
// Private Code
//--------------------------------------------------------------------------------------------------
impl DaifField for Debug {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::D
}
}
impl DaifField for SError {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::A
}
}
impl DaifField for IRQ {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::I
}
}
impl DaifField for FIQ {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::F
}
}
fn is_masked<T: DaifField>() -> bool {
DAIF.is_set(T::daif_field())
}
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
/// Print the AArch64 exceptions status.
#[rustfmt::skip]
pub fn print_state() {
use crate::info;
let to_mask_str = |x| -> _ {
if x { "Masked" } else { "Unmasked" }
};
info!(" Debug: {}", to_mask_str(is_masked::<Debug>()));
info!(" SError: {}", to_mask_str(is_masked::<SError>()));
info!(" IRQ: {}", to_mask_str(is_masked::<IRQ>()));
info!(" FIQ: {}", to_mask_str(is_masked::<FIQ>()));
}

@ -2,19 +2,21 @@
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Memory Management Unit.
//! Memory Management Unit Driver.
//!
//! Static page tables, compiled on boot; Everything 64 KiB granule.
use crate::{
bsp, interface,
memory::{AccessPermissions, AttributeFields, MemAttributes},
};
use super::{AccessPermissions, AttributeFields, MemAttributes};
use crate::{bsp, memory};
use core::convert;
use cortex_a::{barrier, regs::*};
use register::register_bitfields;
// A table descriptor, as per AArch64 Reference Manual Figure D4-15.
//--------------------------------------------------------------------------------------------------
// Private Definitions
//--------------------------------------------------------------------------------------------------
// A table descriptor, as per ARMv8-A Architecture Reference Manual Figure D4-15.
register_bitfields! {u64,
STAGE1_TABLE_DESCRIPTOR [
/// Physical address of the next page table.
@ -32,7 +34,7 @@ register_bitfields! {u64,
]
}
// A level 3 page descriptor, as per AArch64 Reference Manual Figure D4-17.
// A level 3 page descriptor, as per ARMv8-A Architecture Reference Manual Figure D4-17.
register_bitfields! {u64,
STAGE1_PAGE_DESCRIPTOR [
/// Privileged execute-never.
@ -101,18 +103,21 @@ struct PageDescriptor(u64);
#[repr(C)]
#[repr(align(65536))]
struct PageTables<const N: usize> {
// Page descriptors, covering 64 KiB windows per entry.
/// Page descriptors, covering 64 KiB windows per entry.
lvl3: [[PageDescriptor; 8192]; N],
// Table descriptors, covering 512 MiB windows.
/// Table descriptors, covering 512 MiB windows.
lvl2: [TableDescriptor; N],
}
/// Usually evaluates to 1 GiB for RPi3 and 4 GiB for RPi 4.
const ENTRIES_512_MIB: usize = bsp::addr_space_size() >> FIVETWELVE_MIB_SHIFT;
const ENTRIES_512_MIB: usize = bsp::memory::mmu::addr_space_size() >> FIVETWELVE_MIB_SHIFT;
/// The page tables.
///
/// Supposed to land in `.bss`. Therefore, ensure that they boil down to all "0" entries.
/// # Safety
///
/// - Supposed to land in `.bss`. Therefore, ensure that they boil down to all "0" entries.
static mut TABLES: PageTables<{ ENTRIES_512_MIB }> = PageTables {
lvl3: [[PageDescriptor(0); 8192]; ENTRIES_512_MIB],
lvl2: [TableDescriptor(0); ENTRIES_512_MIB],
@ -123,6 +128,30 @@ trait BaseAddr {
fn base_addr_usize(&self) -> usize;
}
/// Constants for indexing the MAIR_EL1.
#[allow(dead_code)]
mod mair {
pub const DEVICE: u64 = 0;
pub const NORMAL: u64 = 1;
}
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
/// Memory Management Unit type.
pub struct MemoryManagementUnit;
//--------------------------------------------------------------------------------------------------
// Global instances
//--------------------------------------------------------------------------------------------------
static MMU: MemoryManagementUnit = MemoryManagementUnit;
//--------------------------------------------------------------------------------------------------
// Private Code
//--------------------------------------------------------------------------------------------------
impl<T, const N: usize> BaseAddr for [T; N] {
fn base_addr_u64(&self) -> u64 {
self as *const T as u64
@ -180,7 +209,7 @@ impl convert::From<AttributeFields>
}
impl PageDescriptor {
fn new(output_addr: usize, attribute_fields: AttributeFields) -> PageDescriptor {
fn new(output_addr: usize, attribute_fields: AttributeFields) -> Self {
let shifted = output_addr >> SIXTYFOUR_KIB_SHIFT;
let val = (STAGE1_PAGE_DESCRIPTOR::VALID::True
+ STAGE1_PAGE_DESCRIPTOR::AF::True
@ -189,17 +218,10 @@ impl PageDescriptor {
+ STAGE1_PAGE_DESCRIPTOR::OUTPUT_ADDR_64KiB.val(shifted as u64))
.value;
PageDescriptor(val)
Self(val)
}
}
/// Constants for indexing the MAIR_EL1.
#[allow(dead_code)]
mod mair {
pub const DEVICE: u64 = 0;
pub const NORMAL: u64 = 1;
}
/// Setup function for the MAIR_EL1 register.
fn set_up_mair() {
// Define the memory types being mapped.
@ -227,7 +249,7 @@ unsafe fn populate_pt_entries() -> Result<(), &'static str> {
let virt_addr = (l2_nr << FIVETWELVE_MIB_SHIFT) + (l3_nr << SIXTYFOUR_KIB_SHIFT);
let (output_addr, attribute_fields) =
bsp::virt_mem_layout().get_virt_addr_properties(virt_addr)?;
bsp::memory::mmu::virt_mem_layout().get_virt_addr_properties(virt_addr)?;
*l3_entry = PageDescriptor::new(output_addr, attribute_fields);
}
@ -252,16 +274,19 @@ fn configure_translation_control() {
}
//--------------------------------------------------------------------------------------------------
// Arch-public
// Public Code
//--------------------------------------------------------------------------------------------------
pub struct MMU;
/// Return a reference to the MMU.
pub fn mmu() -> &'static impl memory::mmu::interface::MMU {
&MMU
}
//--------------------------------------------------------------------------------------------------
// OS interface implementations
//--------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// OS Interface Code
//------------------------------------------------------------------------------
impl interface::mm::MMU for MMU {
impl memory::mmu::interface::MMU for MemoryManagementUnit {
unsafe fn init(&self) -> Result<(), &'static str> {
// Fail early if translation granule is not supported. Both RPis support it, though.
if !ID_AA64MMFR0_EL1.matches_all(ID_AA64MMFR0_EL1::TGran64::Supported) {

@ -2,25 +2,45 @@
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Timer primitives.
//! Architectural timer primitives.
use crate::{interface, warn};
use crate::{time, warn};
use core::time::Duration;
use cortex_a::regs::*;
//--------------------------------------------------------------------------------------------------
// Private Definitions
//--------------------------------------------------------------------------------------------------
const NS_PER_S: u64 = 1_000_000_000;
//--------------------------------------------------------------------------------------------------
// Arch-public
// Public Definitions
//--------------------------------------------------------------------------------------------------
/// ARMv8 Generic Timer.
pub struct GenericTimer;
//--------------------------------------------------------------------------------------------------
// Global instances
//--------------------------------------------------------------------------------------------------
pub struct Timer;
static TIME_MANAGER: GenericTimer = GenericTimer;
//--------------------------------------------------------------------------------------------------
// OS interface implementations
// Public Code
//--------------------------------------------------------------------------------------------------
impl interface::time::Timer for Timer {
/// Return a reference to the time manager.
pub fn time_manager() -> &'static impl time::interface::TimeManager {
&TIME_MANAGER
}
//------------------------------------------------------------------------------
// OS Interface Code
//------------------------------------------------------------------------------
impl time::interface::TimeManager for GenericTimer {
fn resolution(&self) -> Duration {
Duration::from_nanos(NS_PER_S / (CNTFRQ_EL0.get() as u64))
}

@ -2,12 +2,12 @@
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Conditional exporting of Board Support Packages.
//! Conditional re-exporting of Board Support Packages.
mod driver;
mod device_driver;
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
mod rpi;
mod raspberrypi;
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
pub use rpi::*;
pub use raspberrypi::*;

@ -2,7 +2,7 @@
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Drivers.
//! Device driver.
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
mod bcm;

@ -7,5 +7,5 @@
mod bcm2xxx_gpio;
mod bcm2xxx_pl011_uart;
pub use bcm2xxx_gpio::GPIO;
pub use bcm2xxx_pl011_uart::{PL011Uart, PanicUart};
pub use bcm2xxx_gpio::*;
pub use bcm2xxx_pl011_uart::*;

@ -2,11 +2,15 @@
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! GPIO driver.
//! GPIO Driver.
use crate::{arch, arch::sync::NullLock, interface};
use crate::{cpu, driver, synchronization, synchronization::NullLock};
use core::ops;
use register::{mmio::ReadWrite, register_bitfields, register_structs};
use register::{mmio::*, register_bitfields, register_structs};
//--------------------------------------------------------------------------------------------------
// Private Definitions
//--------------------------------------------------------------------------------------------------
// GPIO registers.
//
@ -66,12 +70,23 @@ register_structs! {
}
}
/// The driver's private data.
struct GPIOInner {
base_addr: usize,
}
/// Deref to RegisterBlock.
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
/// Representation of the GPIO HW.
pub struct GPIO {
inner: NullLock<GPIOInner>,
}
//--------------------------------------------------------------------------------------------------
// Private Code
//--------------------------------------------------------------------------------------------------
impl ops::Deref for GPIOInner {
type Target = RegisterBlock;
@ -81,29 +96,28 @@ impl ops::Deref for GPIOInner {
}
impl GPIOInner {
const fn new(base_addr: usize) -> GPIOInner {
GPIOInner { base_addr }
const fn new(base_addr: usize) -> Self {
Self { base_addr }
}
/// Return a pointer to the register block.
/// Return a pointer to the associated MMIO register block.
fn ptr(&self) -> *const RegisterBlock {
self.base_addr as *const _
}
}
//--------------------------------------------------------------------------------------------------
// BSP-public
// Public Code
//--------------------------------------------------------------------------------------------------
use interface::sync::Mutex;
/// The driver's main struct.
pub struct GPIO {
inner: NullLock<GPIOInner>,
}
impl GPIO {
pub const unsafe fn new(base_addr: usize) -> GPIO {
GPIO {
/// Create an instance.
///
/// # Safety
///
/// - The user must ensure to provide the correct `base_addr`.
pub const unsafe fn new(base_addr: usize) -> Self {
Self {
inner: NullLock::new(GPIOInner::new(base_addr)),
}
}
@ -122,24 +136,25 @@ impl GPIO {
// Enable pins 14 and 15.
inner.GPPUD.set(0);
arch::spin_for_cycles(150);
cpu::spin_for_cycles(150);
inner
.GPPUDCLK0
.write(GPPUDCLK0::PUDCLK14::AssertClock + GPPUDCLK0::PUDCLK15::AssertClock);
arch::spin_for_cycles(150);
cpu::spin_for_cycles(150);
inner.GPPUDCLK0.set(0);
})
}
}
//--------------------------------------------------------------------------------------------------
// OS interface implementations
//--------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// OS Interface Code
//------------------------------------------------------------------------------
use synchronization::interface::Mutex;
impl interface::driver::DeviceDriver for GPIO {
impl driver::interface::DeviceDriver for GPIO {
fn compatible(&self) -> &str {
"GPIO"
"BCM GPIO"
}
}

@ -4,10 +4,14 @@
//! PL011 UART driver.
use crate::{arch, arch::sync::NullLock, interface};
use crate::{console, cpu, driver, synchronization, synchronization::NullLock};
use core::{fmt, ops};
use register::{mmio::*, register_bitfields, register_structs};
//--------------------------------------------------------------------------------------------------
// Private Definitions
//--------------------------------------------------------------------------------------------------
// PL011 UART registers.
//
// Descriptions taken from
@ -109,6 +113,10 @@ register_bitfields! {
]
}
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
register_structs! {
#[allow(non_snake_case)]
pub RegisterBlock {
@ -126,13 +134,24 @@ register_structs! {
}
}
/// The driver's mutex protected part.
pub struct PL011UartInner {
base_addr: usize,
chars_written: usize,
chars_read: usize,
}
// Export the inner struct so that BSPs can use it for the panic handler.
pub use PL011UartInner as PanicUart;
/// Representation of the UART.
pub struct PL011Uart {
inner: NullLock<PL011UartInner>,
}
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
/// Deref to RegisterBlock.
///
/// Allows writing
@ -152,8 +171,13 @@ impl ops::Deref for PL011UartInner {
}
impl PL011UartInner {
pub const unsafe fn new(base_addr: usize) -> PL011UartInner {
PL011UartInner {
/// Create an instance.
///
/// # Safety
///
/// - The user must ensure to provide the correct `base_addr`.
pub const unsafe fn new(base_addr: usize) -> Self {
Self {
base_addr,
chars_written: 0,
chars_read: 0,
@ -164,7 +188,7 @@ impl PL011UartInner {
///
/// Results in 8N1 and 230400 baud (if the clk has been previously set to 48 MHz by the
/// firmware).
pub fn init(&self) {
pub fn init(&mut self) {
// Turn it off temporarily.
self.CR.set(0);
@ -186,7 +210,7 @@ impl PL011UartInner {
fn write_char(&mut self, c: char) {
// Spin while TX FIFO full is set, waiting for an empty slot.
while self.FR.matches_all(FR::TXFF::SET) {
arch::nop();
cpu::nop();
}
// Write the character to the buffer.
@ -215,42 +239,28 @@ impl fmt::Write for PL011UartInner {
}
}
//--------------------------------------------------------------------------------------------------
// Export the inner struct so that BSPs can use it for the panic handler
//--------------------------------------------------------------------------------------------------
pub use PL011UartInner as PanicUart;
//--------------------------------------------------------------------------------------------------
// BSP-public
//--------------------------------------------------------------------------------------------------
/// The driver's main struct.
pub struct PL011Uart {
inner: NullLock<PL011UartInner>,
}
impl PL011Uart {
/// # Safety
///
/// The user must ensure to provide the correct `base_addr`.
pub const unsafe fn new(base_addr: usize) -> PL011Uart {
PL011Uart {
/// - The user must ensure to provide the correct `base_addr`.
pub const unsafe fn new(base_addr: usize) -> Self {
Self {
inner: NullLock::new(PL011UartInner::new(base_addr)),
}
}
}
//--------------------------------------------------------------------------------------------------
// OS interface implementations
//--------------------------------------------------------------------------------------------------
use interface::sync::Mutex;
//------------------------------------------------------------------------------
// OS Interface Code
//------------------------------------------------------------------------------
use synchronization::interface::Mutex;
impl interface::driver::DeviceDriver for PL011Uart {
impl driver::interface::DeviceDriver for PL011Uart {
fn compatible(&self) -> &str {
"PL011Uart"
"BCM PL011 UART"
}
fn init(&self) -> interface::driver::Result {
fn init(&self) -> Result<(), ()> {
let mut r = &self.inner;
r.lock(|inner| inner.init());
@ -258,7 +268,7 @@ impl interface::driver::DeviceDriver for PL011Uart {
}
}
impl interface::console::Write for PL011Uart {
impl console::interface::Write for PL011Uart {
/// Passthrough of `args` to the `core::fmt::Write` implementation, but guarded by a Mutex to
/// serialize access.
fn write_char(&self, c: char) {
@ -274,23 +284,23 @@ impl interface::console::Write for PL011Uart {
}
fn flush(&self) {
let mut r = &self.inner;
// Spin until TX FIFO empty is set.
let mut r = &self.inner;
r.lock(|inner| {
while !inner.FR.matches_all(FR::TXFE::SET) {
arch::nop();
cpu::nop();
}
});
}
}
impl interface::console::Read for PL011Uart {
impl console::interface::Read for PL011Uart {
fn read_char(&self) -> char {
let mut r = &self.inner;
r.lock(|inner| {
// Spin while RX FIFO empty is set.
while inner.FR.matches_all(FR::RXFE::SET) {
arch::nop();
cpu::nop();
}
// Read one character.
@ -319,7 +329,7 @@ impl interface::console::Read for PL011Uart {
}
}
impl interface::console::Statistics for PL011Uart {
impl console::interface::Statistics for PL011Uart {
fn chars_written(&self) -> usize {
let mut r = &self.inner;
r.lock(|inner| inner.chars_written)

@ -0,0 +1,38 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Top-level BSP file for the Raspberry Pi 3 and 4.
pub mod console;
pub mod cpu;
pub mod driver;
pub mod memory;
//--------------------------------------------------------------------------------------------------
// Global instances
//--------------------------------------------------------------------------------------------------
use super::device_driver;
static GPIO: device_driver::GPIO =
unsafe { device_driver::GPIO::new(memory::map::mmio::GPIO_BASE) };
static PL011_UART: device_driver::PL011Uart =
unsafe { device_driver::PL011Uart::new(memory::map::mmio::PL011_UART_BASE) };
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
/// Board identification.
pub fn board_name() -> &'static str {
#[cfg(feature = "bsp_rpi3")]
{
"Raspberry Pi 3"
}
#[cfg(feature = "bsp_rpi4")]
{
"Raspberry Pi 4"
}
}

@ -0,0 +1,30 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! BSP console facilities.
use super::{super::device_driver, memory::map};
use crate::console;
use core::fmt;
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
/// In case of a panic, the panic handler uses this function to take a last shot at printing
/// something before the system is halted.
///
/// # Safety
///
/// - Use only for printing during a panic.
pub unsafe fn panic_console_out() -> impl fmt::Write {
let mut uart = device_driver::PanicUart::new(map::mmio::PL011_UART_BASE);
uart.init();
uart
}
/// Return a reference to the console.
pub fn console() -> &'static impl console::interface::All {
&super::PL011_UART
}

@ -0,0 +1,15 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! BSP Processor code.
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
/// Used by `arch` code to find the early boot core.
pub const BOOT_CORE_ID: usize = 0;
/// The early boot core's stack address.
pub const BOOT_CORE_STACK_START: u64 = 0x80_000;

@ -0,0 +1,49 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! BSP driver support.
use crate::driver;
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
/// Device Driver Manager type.
pub struct BSPDriverManager {
device_drivers: [&'static (dyn DeviceDriver + Sync); 2],
}
//--------------------------------------------------------------------------------------------------
// Global instances
//--------------------------------------------------------------------------------------------------
static BSP_DRIVER_MANAGER: BSPDriverManager = BSPDriverManager {
device_drivers: [&super::GPIO, &super::PL011_UART],
};
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
/// Return a reference to the driver manager.
pub fn driver_manager() -> &'static impl driver::interface::DriverManager {
&BSP_DRIVER_MANAGER
}
//------------------------------------------------------------------------------
// OS Interface Code
//------------------------------------------------------------------------------
use driver::interface::DeviceDriver;
impl driver::interface::DriverManager for BSPDriverManager {
fn all_device_drivers(&self) -> &[&'static (dyn DeviceDriver + Sync)] {
&self.device_drivers[..]
}
fn post_device_driver_init(&self) {
// Configure PL011Uart's output pins.
super::GPIO.map_pl011_uart();
}
}

@ -0,0 +1,42 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! BSP Memory Management.
pub mod mmu;
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
/// The board's memory map.
#[rustfmt::skip]
pub(super) mod map {
pub const END_INCLUSIVE: usize = 0xFFFF_FFFF;
pub const GPIO_OFFSET: usize = 0x0020_0000;
pub const UART_OFFSET: usize = 0x0020_1000;
/// Physical devices.
#[cfg(feature = "bsp_rpi3")]
pub mod mmio {
use super::*;
pub const BASE: usize = 0x3F00_0000;
pub const GPIO_BASE: usize = BASE + GPIO_OFFSET;
pub const PL011_UART_BASE: usize = BASE + UART_OFFSET;
pub const END_INCLUSIVE: usize = 0x4000_FFFF;
}
/// Physical devices.
#[cfg(feature = "bsp_rpi4")]
pub mod mmio {
use super::*;
pub const BASE: usize = 0xFE00_0000;
pub const GPIO_BASE: usize = BASE + GPIO_OFFSET;
pub const PL011_UART_BASE: usize = BASE + UART_OFFSET;
pub const END_INCLUSIVE: usize = 0xFF84_FFFF;
}
}

@ -2,23 +2,24 @@
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! The virtual memory layout.
//!
//! The layout must contain only special ranges, aka anything that is _not_ normal cacheable DRAM.
//! It is agnostic of the paging granularity that the architecture's MMU will use.
//! BSP Memory Management Unit.
use super::memory_map;
use crate::memory::*;
use super::super::memory;
use crate::memory::mmu::*;
use core::ops::RangeInclusive;
//--------------------------------------------------------------------------------------------------
// BSP-public
// Public Definitions
//--------------------------------------------------------------------------------------------------
pub const NUM_MEM_RANGES: usize = 2;
const NUM_MEM_RANGES: usize = 2;
/// The virtual memory layout.
///
/// The layout must contain only special ranges, aka anything that is _not_ normal cacheable DRAM.
/// It is agnostic of the paging granularity that the architecture's MMU will use.
pub static LAYOUT: KernelVirtualLayout<{ NUM_MEM_RANGES }> = KernelVirtualLayout::new(
memory_map::END_INCLUSIVE,
memory::map::END_INCLUSIVE,
[
RangeDescriptor {
name: "Kernel code and RO data",
@ -56,7 +57,7 @@ pub static LAYOUT: KernelVirtualLayout<{ NUM_MEM_RANGES }> = KernelVirtualLayout
RangeDescriptor {
name: "Device MMIO",
virtual_range: || {
RangeInclusive::new(memory_map::mmio::BASE, memory_map::mmio::END_INCLUSIVE)
RangeInclusive::new(memory::map::mmio::BASE, memory::map::mmio::END_INCLUSIVE)
},
translation: Translation::Identity,
attribute_fields: AttributeFields {
@ -67,3 +68,17 @@ pub static LAYOUT: KernelVirtualLayout<{ NUM_MEM_RANGES }> = KernelVirtualLayout
},
],
);
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
/// Return the address space size in bytes.
pub const fn addr_space_size() -> usize {
memory::map::END_INCLUSIVE + 1
}
/// Return a reference to the virtual memory layout.
pub fn virt_mem_layout() -> &'static KernelVirtualLayout<{ NUM_MEM_RANGES }> {
&LAYOUT
}

@ -0,0 +1,54 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! System console.
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
/// Console interfaces.
pub mod interface {
use core::fmt;
/// Console write functions.
pub trait Write {
/// Write a single character.
fn write_char(&self, c: char);
/// Write a Rust format string.
fn write_fmt(&self, args: fmt::Arguments) -> fmt::Result;
/// Block execution until the last character has been physically put on the TX wire
/// (draining TX buffers/FIFOs, if any).
fn flush(&self);
}
/// Console read functions.
pub trait Read {
/// Read a single character.
fn read_char(&self) -> char {
' '
}
/// Clear RX buffers, if any.
fn clear(&self);
}
/// Console statistics.
pub trait Statistics {
/// Return the number of characters written.
fn chars_written(&self) -> usize {
0
}
/// Return the number of characters read.
fn chars_read(&self) -> usize {
0
}
}
/// Trait alias for a full-fledged console.
pub trait All = Write + Read + Statistics;
}

@ -0,0 +1,12 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2020 Andre Richter <andre.o.richter@gmail.com>
//! Processor code.
#[cfg(target_arch = "aarch64")]
#[path = "_arch/aarch64/cpu.rs"]
mod arch_cpu;
pub use arch_cpu::*;
pub mod smp;

@ -0,0 +1,10 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Symmetric multiprocessing.
#[cfg(target_arch = "aarch64")]
#[path = "../_arch/aarch64/cpu/smp.rs"]
mod arch_cpu_smp;
pub use arch_cpu_smp::*;

@ -0,0 +1,41 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Driver support.
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
/// Driver interfaces.
pub mod interface {
/// Device Driver functions.
pub trait DeviceDriver {
/// Return a compatibility string for identifying the driver.
fn compatible(&self) -> &str;
/// Called by the kernel to bring up the device.
fn init(&self) -> Result<(), ()> {
Ok(())
}
}
/// Device driver management functions.
///
/// The `BSP` is supposed to supply one global instance.
pub trait DriverManager {
/// Return a slice of references to all `BSP`-instantiated drivers.
///
/// # Safety
///
/// - The order of devices is the order in which `DeviceDriver::init()` is called.
fn all_device_drivers(&self) -> &[&'static (dyn DeviceDriver + Sync)];
/// Initialization code that runs after driver init.
///
/// For example, device driver code that depends on other drivers already being online.
fn post_device_driver_init(&self);
}
}

@ -0,0 +1,26 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2020 Andre Richter <andre.o.richter@gmail.com>
//! Synchronous and asynchronous exception handling.
#[cfg(target_arch = "aarch64")]
#[path = "_arch/aarch64/exception.rs"]
mod arch_exception;
pub use arch_exception::*;
pub mod asynchronous;
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
/// Kernel privilege levels.
#[allow(missing_docs)]
#[derive(PartialEq)]
pub enum PrivilegeLevel {
User,
Kernel,
Hypervisor,
Unknown,
}

@ -0,0 +1,10 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2020 Andre Richter <andre.o.richter@gmail.com>
//! Asynchronous exception handling.
#[cfg(target_arch = "aarch64")]
#[path = "../_arch/aarch64/exception/asynchronous.rs"]
mod arch_exception_async;
pub use arch_exception_async::*;

@ -0,0 +1,226 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
// Rust embedded logo for `make doc`.
#![doc(html_logo_url = "https://git.io/JeGIp")]
//! The `kernel` binary.
//!
//! # TL;DR - Overview of important Kernel entities
//!
//! - [`bsp::console::console()`] - Returns a reference to the kernel's [console interface].
//! - [`bsp::driver::driver_manager()`] - Returns a reference to the kernel's [driver interface].
//! - [`memory::mmu::mmu()`] - Returns a reference to the kernel's [MMU interface].
//! - [`time::time_manager()`] - Returns a reference to the kernel's [timer interface].
//!
//! [console interface]: ../libkernel/console/interface/index.html
//! [driver interface]: ../libkernel/driver/interface/trait.DriverManager.html
//! [MMU interface]: ../libkernel/memory/mmu/interface/trait.MMU.html
//! [timer interface]: ../libkernel/time/interface/trait.TimeManager.html
//!
//! # Code organization and architecture
//!
//! The code is divided into different *modules*, each representing a typical **subsystem** of the
//! `kernel`. Top-level module files of subsystems reside directly in the `src` folder. For example,
//! `src/memory.rs` contains code that is concerned with all things memory management.
//!
//! ## Visibility of processor architecture code
//!
//! Some of the `kernel`'s subsystems depend on low-level code that is specific to the target
//! processor architecture. For each supported processor architecture, there exists a subfolder in
//! `src/_arch`, for example, `src/_arch/aarch64`.
//!
//! The architecture folders mirror the subsystem modules laid out in `src`. For example,
//! architectural code that belongs to the `kernel`'s memory subsystem (`src/memory.rs`) would go
//! into `src/_arch/aarch64/memory.rs`. The latter file is directly included and re-exported in
//! `src/memory.rs`, so that the architectural code parts are transparent with respect to the code's
//! module organization. That means a public function `foo()` defined in
//! `src/_arch/aarch64/memory.rs` would be reachable as `crate::memory::foo()` only.
//!
//! The `_` in `_arch` denotes that this folder is not part of the standard module hierarchy.
//! Rather, it's contents are conditionally pulled into respective files using the `#[path =
//! "_arch/xxx/yyy.rs"]` attribute.
//!
//! ## BSP code
//!
//! `BSP` stands for Board Support Package. `BSP` code is organized under `src/bsp.rs` and contains
//! target board specific definitions and functions. These are things such as the board's memory map
//! or instances of drivers for devices that are featured on the respective board.
//!
//! Just like processor architecture code, the `BSP` code's module structure tries to mirror the
//! `kernel`'s subsystem modules, but there is no transparent re-exporting this time. That means
//! whatever is provided must be called starting from the `bsp` namespace, e.g.
//! `bsp::driver::driver_manager()`.
//!
//! ## Kernel interfaces
//!
//! Both `arch` and `bsp` contain code that is conditionally compiled depending on the actual target
//! and board for which the kernel is compiled. For example, the `interrupt controller` hardware of
//! the `Raspberry Pi 3` and the `Raspberry Pi 4` is different, but we want the rest of the `kernel`
//! code to play nicely with any of the two without much hassle.
//!
//! In order to provide a clean abstraction between `arch`, `bsp` and `generic kernel code`,
//! `interface` traits are provided *whenever possible* and *where it makes sense*. They are defined
//! in the respective subsystem module and help to enforce the idiom of *program to an interface,
//! not an implementation*. For example, there will be a common IRQ handling interface which the two
//! different interrupt controller `drivers` of both Raspberrys will implement, and only export the
//! interface to the rest of the `kernel`.
//!
//! ```
//! +-------------------+
//! | Interface (Trait) |
//! | |
//! +--+-------------+--+
//! ^ ^
//! | |
//! | |
//! +----------+--+ +--+----------+
//! | kernel code | | bsp code |
//! | | | arch code |
//! +-------------+ +-------------+
//! ```
//!
//! # Summary
//!
//! For a logical `kernel` subsystem, corresponding code can be distributed over several physical
//! locations. Here is an example for the **memory** subsystem:
//!
//! - `src/memory.rs` and `src/memory/**/*`
//! - Common code that is agnostic of target processor architecture and `BSP` characteristics.
//! - Example: A function to zero a chunk of memory.
//! - Interfaces for the memory subsystem that are implemented by `arch` or `BSP` code.
//! - Example: An `MMU` interface that defines `MMU` function prototypes.
//! - `src/bsp/__board_name__/memory.rs` and `src/bsp/__board_name__/memory/**/*`
//! - `BSP` specific code.
//! - Example: The board's memory map (physical addresses of DRAM and MMIO devices).
//! - `src/_arch/__arch_name__/memory.rs` and `src/_arch/__arch_name__/memory/**/*`
//! - Processor architecture specific code.
//! - Example: Implementation of the `MMU` interface for the `__arch_name__` processor
//! architecture.
//!
//! From a namespace perspective, **memory** subsystem code lives in:
//!
//! - `crate::memory::*`
//! - `crate::bsp::memory::*`
#![allow(incomplete_features)]
#![feature(const_generics)]
#![feature(format_args_nl)]
#![feature(global_asm)]
#![feature(naked_functions)]
#![feature(panic_info_message)]
#![feature(trait_alias)]
#![no_main]
#![no_std]
// `mod cpu` provides the `_start()` function, the first function to run. `_start()` then calls
// `runtime_init()`, which jumps to `kernel_init()`.
mod bsp;
mod console;
mod cpu;
mod driver;
mod exception;
mod memory;
mod panic_wait;
mod print;
mod runtime_init;
mod synchronization;
mod time;
/// Early init code.
///
/// # Safety
///
/// - Only a single core must be active and running this function.
/// - The init calls in this function must appear in the correct order:
/// - Virtual memory must be activated before the device drivers.
/// - Without it, any atomic operations, e.g. the yet-to-be-introduced spinlocks in the device
/// drivers (which currently employ NullLocks instead of spinlocks), will fail to work on
/// the RPi SoCs.
unsafe fn kernel_init() -> ! {
use driver::interface::DriverManager;
use memory::mmu::interface::MMU;
exception::handling_init();
if let Err(string) = memory::mmu::mmu().init() {
panic!("MMU: {}", string);
}
for i in bsp::driver::driver_manager().all_device_drivers().iter() {
if i.init().is_err() {
panic!("Error loading driver: {}", i.compatible())
}
}
bsp::driver::driver_manager().post_device_driver_init();
// println! is usable from here on.
// Transition from unsafe to safe.
kernel_main()
}
/// The main function running after the early init.
fn kernel_main() -> ! {
use console::interface::All;
use core::time::Duration;
use driver::interface::DriverManager;
use time::interface::TimeManager;
info!("Booting on: {}", bsp::board_name());
info!("MMU online. Special regions:");
bsp::memory::mmu::virt_mem_layout().print_layout();
let (_, privilege_level) = exception::current_privilege_level();
info!("Current privilege level: {}", privilege_level);
info!("Exception handling state:");
exception::asynchronous::print_state();
info!(
"Architectural timer resolution: {} ns",
time::time_manager().resolution().as_nanos()
);
info!("Drivers loaded:");
for (i, driver) in bsp::driver::driver_manager()
.all_device_drivers()
.iter()
.enumerate()
{
info!(" {}. {}", i + 1, driver.compatible());
}
info!("Timer test, spinning for 1 second");
time::time_manager().spin_for(Duration::from_secs(1));
// Cause an exception by accessing a virtual address for which no translation was set up. This
// code accesses the address 8 GiB, which is outside the mapped address space.
//
// For demo purposes, the exception handler will catch the faulting 8 GiB address and allow
// execution to continue.
info!("");
info!("Trying to write to address 8 GiB...");
let mut big_addr: u64 = 8 * 1024 * 1024 * 1024;
unsafe { core::ptr::read_volatile(big_addr as *mut u64) };
info!("************************************************");
info!("Whoa! We recovered from a synchronous exception!");
info!("************************************************");
info!("");
info!("Let's try again");
// Now use address 9 GiB. The exception handler won't forgive us this time.
info!("Trying to write to address 9 GiB...");
big_addr = 9 * 1024 * 1024 * 1024;
unsafe { core::ptr::read_volatile(big_addr as *mut u64) };
// Will never reach here in this tutorial.
info!("Echoing input now");
loop {
let c = bsp::console::console().read_char();
bsp::console::console().write_char(c);
}
}

@ -0,0 +1,31 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Memory Management.
pub mod mmu;
use core::ops::Range;
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
/// Zero out a memory region.
///
/// # Safety
///
/// - `range.start` and `range.end` must be valid.
/// - `range.start` and `range.end` must be `T` aligned.
pub unsafe fn zero_volatile<T>(range: Range<*mut T>)
where
T: From<u8>,
{
let mut ptr = range.start;
while ptr < range.end {
core::ptr::write_volatile(ptr, T::from(0));
ptr = ptr.offset(1);
}
}

@ -1,32 +1,47 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! Memory Management.
use core::{
fmt,
ops::{Range, RangeInclusive},
};
/// Zero out a memory region.
///
/// # Safety
///
/// - `range.start` and `range.end` must be valid.
/// - `range.start` and `range.end` must be `T` aligned.
pub unsafe fn zero_volatile<T>(range: Range<*mut T>)
where
T: From<u8>,
{
let mut ptr = range.start;
while ptr < range.end {
core::ptr::write_volatile(ptr, T::from(0));
ptr = ptr.offset(1);
// Copyright (c) 2020 Andre Richter <andre.o.richter@gmail.com>
//! Memory Management Unit.
//!
//! In order to decouple `BSP` and `arch` parts of the MMU code (to keep them pluggable), this file
//! provides types for composing an architecture-agnostic description of the kernel 's virtual
//! memory layout.
//!
//! The `BSP` provides such a description through the `bsp::memory::mmu::virt_mem_layout()`
//! function.
//!
//! The `MMU` driver of the `arch` code uses `bsp::memory::mmu::virt_mem_layout()` to compile and
//! install respective page tables.
#[cfg(target_arch = "aarch64")]
#[path = "../_arch/aarch64/memory/mmu.rs"]
mod arch_mmu;
pub use arch_mmu::*;
use core::{fmt, ops::RangeInclusive};
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
/// Memory Management interfaces.
pub mod interface {
/// MMU functions.
pub trait MMU {
/// Called by the kernel during early init. Supposed to take the page tables from the
/// `BSP`-supplied `virt_mem_layout()` and install/activate them for the respective MMU.
///
/// # Safety
///
/// - Changes the HW's global state.
unsafe fn init(&self) -> Result<(), &'static str>;
}
}
/// Architecture agnostic translation types.
#[allow(missing_docs)]
#[allow(dead_code)]
#[derive(Copy, Clone)]
pub enum Translation {
@ -34,18 +49,24 @@ pub enum Translation {
Offset(usize),
}
/// Architecture agnostic memory attributes.
#[allow(missing_docs)]
#[derive(Copy, Clone)]
pub enum MemAttributes {
CacheableDRAM,
Device,
}
/// Architecture agnostic access permissions.
#[allow(missing_docs)]
#[derive(Copy, Clone)]
pub enum AccessPermissions {
ReadOnly,
ReadWrite,
}
/// Collection of memory attributes.
#[allow(missing_docs)]
#[derive(Copy, Clone)]
pub struct AttributeFields {
pub mem_attributes: MemAttributes,
@ -53,6 +74,28 @@ pub struct AttributeFields {
pub execute_never: bool,
}
/// Architecture agnostic descriptor for a memory range.
#[allow(missing_docs)]
pub struct RangeDescriptor {
pub name: &'static str,
pub virtual_range: fn() -> RangeInclusive<usize>,
pub translation: Translation,
pub attribute_fields: AttributeFields,
}
/// Type for expressing the kernel's virtual memory layout.
pub struct KernelVirtualLayout<const NUM_SPECIAL_RANGES: usize> {
/// The last (inclusive) address of the address space.
max_virt_addr_inclusive: usize,
/// Array of descriptors for non-standard (normal cacheable DRAM) memory regions.
inner: [RangeDescriptor; NUM_SPECIAL_RANGES],
}
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
impl Default for AttributeFields {
fn default() -> AttributeFields {
AttributeFields {
@ -63,14 +106,6 @@ impl Default for AttributeFields {
}
}
/// An architecture agnostic descriptor for a memory range.
pub struct RangeDescriptor {
pub name: &'static str,
pub virtual_range: fn() -> RangeInclusive<usize>,
pub translation: Translation,
pub attribute_fields: AttributeFields,
}
/// Human-readable output of a RangeDescriptor.
impl fmt::Display for RangeDescriptor {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
@ -118,13 +153,8 @@ impl fmt::Display for RangeDescriptor {
}
}
/// Type for expressing the kernel's virtual memory layout.
pub struct KernelVirtualLayout<const NUM_SPECIAL_RANGES: usize> {
max_virt_addr_inclusive: usize,
inner: [RangeDescriptor; NUM_SPECIAL_RANGES],
}
impl<const NUM_SPECIAL_RANGES: usize> KernelVirtualLayout<{ NUM_SPECIAL_RANGES }> {
/// Create a new instance.
pub const fn new(max: usize, layout: [RangeDescriptor; NUM_SPECIAL_RANGES]) -> Self {
Self {
max_virt_addr_inclusive: max,

@ -4,13 +4,17 @@
//! A panic handler that infinitely waits.
use crate::{arch, bsp};
use crate::{bsp, cpu};
use core::{fmt, panic::PanicInfo};
//--------------------------------------------------------------------------------------------------
// Private Code
//--------------------------------------------------------------------------------------------------
fn _panic_print(args: fmt::Arguments) {
use fmt::Write;
unsafe { bsp::panic_console_out().write_fmt(args).unwrap() };
unsafe { bsp::console::panic_console_out().write_fmt(args).unwrap() };
}
/// Prints with a newline - only use from the panic handler.
@ -31,5 +35,5 @@ fn panic(info: &PanicInfo) -> ! {
panic_println!("\nKernel panic!");
}
arch::wait_forever()
cpu::wait_forever()
}

@ -4,16 +4,24 @@
//! Printing facilities.
use crate::{bsp, interface};
use crate::{bsp, console};
use core::fmt;
//--------------------------------------------------------------------------------------------------
// Private Code
//--------------------------------------------------------------------------------------------------
#[doc(hidden)]
pub fn _print(args: fmt::Arguments) {
use interface::console::Write;
use console::interface::Write;
bsp::console().write_fmt(args).unwrap();
bsp::console::console().write_fmt(args).unwrap();
}
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
/// Prints without a newline.
///
/// Carbon copy from https://doc.rust-lang.org/src/std/macros.rs.html
@ -33,14 +41,14 @@ macro_rules! println {
})
}
/// Prints an info, with newline.
/// Prints an info, with a newline.
#[macro_export]
macro_rules! info {
($string:expr) => ({
#[allow(unused_imports)]
use crate::interface::time::Timer;
use crate::time::interface::TimeManager;
let timestamp = $crate::arch::timer().uptime();
let timestamp = $crate::time::time_manager().uptime();
let timestamp_subsec_us = timestamp.subsec_micros();
$crate::print::_print(format_args_nl!(
@ -52,9 +60,9 @@ macro_rules! info {
});
($format_string:expr, $($arg:tt)*) => ({
#[allow(unused_imports)]
use crate::interface::time::Timer;
use crate::time::interface::TimeManager;
let timestamp = $crate::arch::timer().uptime();
let timestamp = $crate::time::time_manager().uptime();
let timestamp_subsec_us = timestamp.subsec_micros();
$crate::print::_print(format_args_nl!(
@ -67,14 +75,14 @@ macro_rules! info {
})
}
/// Prints a warning, with newline.
/// Prints a warning, with a newline.
#[macro_export]
macro_rules! warn {
($string:expr) => ({
#[allow(unused_imports)]
use crate::interface::time::Timer;
use crate::time::interface::TimeManager;
let timestamp = $crate::arch::timer().uptime();
let timestamp = $crate::time::time_manager().uptime();
let timestamp_subsec_us = timestamp.subsec_micros();
$crate::print::_print(format_args_nl!(
@ -86,9 +94,9 @@ macro_rules! warn {
});
($format_string:expr, $($arg:tt)*) => ({
#[allow(unused_imports)]
use crate::interface::time::Timer;
use crate::time::interface::TimeManager;
let timestamp = $crate::arch::timer().uptime();
let timestamp = $crate::time::time_manager().uptime();
let timestamp_subsec_us = timestamp.subsec_micros();
$crate::print::_print(format_args_nl!(

@ -7,6 +7,10 @@
use crate::memory;
use core::ops::Range;
//--------------------------------------------------------------------------------------------------
// Private Code
//--------------------------------------------------------------------------------------------------
/// Return the range spanning the .bss section.
///
/// # Safety
@ -36,6 +40,10 @@ unsafe fn zero_bss() {
memory::zero_volatile(bss_range());
}
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
/// Equivalent to `crt0` or `c0` code in C/C++ world. Clears the `bss` section, then jumps to kernel
/// init code.
///

@ -0,0 +1,91 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2020 Andre Richter <andre.o.richter@gmail.com>
//! Synchronization primitives.
use core::cell::UnsafeCell;
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
/// Synchronization interfaces.
pub mod interface {
/// Any object implementing this trait guarantees exclusive access to the data contained within
/// the Mutex for the duration of the provided closure.
///
/// The trait follows the [Rust embedded WG's
/// proposal](https://github.com/korken89/wg/blob/master/rfcs/0377-mutex-trait.md) and therefore
/// provides some goodness such as [deadlock
/// prevention](https://github.com/korken89/wg/blob/master/rfcs/0377-mutex-trait.md#design-decisions-and-compatibility).
///
/// # Example
///
/// Since the lock function takes an `&mut self` to enable deadlock-prevention, the trait is
/// best implemented **for a reference to a container struct**, and has a usage pattern that
/// might feel strange at first:
///
/// ```
/// static MUT: Mutex<RefCell<i32>> = Mutex::new(RefCell::new(0));
///
/// fn foo() {
/// let mut r = &MUT; // Note that r is mutable
/// r.lock(|data| *data += 1);
/// }
/// ```
pub trait Mutex {
/// The type of encapsulated data.
type Data;
/// Creates a critical section and grants temporary mutable access to the encapsulated data.
fn lock<R>(&mut self, f: impl FnOnce(&mut Self::Data) -> R) -> R;
}
}
/// A pseudo-lock for teaching purposes.
///
/// Used to introduce [interior mutability].
///
/// In contrast to a real Mutex implementation, does not protect against concurrent access from
/// other cores to the contained data. This part is preserved for later lessons.
///
/// The lock will only be used as long as it is safe to do so, i.e. as long as the kernel is
/// executing single-threaded, aka only running on a single core with interrupts disabled.
///
/// [interior mutability]: https://doc.rust-lang.org/std/cell/index.html
pub struct NullLock<T: ?Sized> {
data: UnsafeCell<T>,
}
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
unsafe impl<T: ?Sized> Sync for NullLock<T> {}
impl<T> NullLock<T> {
/// Wraps `data` into a new `NullLock`.
pub const fn new(data: T) -> Self {
Self {
data: UnsafeCell::new(data),
}
}
}
//------------------------------------------------------------------------------
// OS Interface Code
//------------------------------------------------------------------------------
impl<T> interface::Mutex for &NullLock<T> {
type Data = T;
fn lock<R>(&mut self, f: impl FnOnce(&mut Self::Data) -> R) -> R {
// In a real lock, there would be code encapsulating this line that ensures that this
// mutable reference will ever only be given out once at a time.
let data = unsafe { &mut *self.data.get() };
f(data)
}
}

@ -0,0 +1,35 @@
// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2020 Andre Richter <andre.o.richter@gmail.com>
//! Timer primitives.
#[cfg(target_arch = "aarch64")]
#[path = "_arch/aarch64/time.rs"]
mod arch_time;
pub use arch_time::*;
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
/// Timekeeping interfaces.
pub mod interface {
use core::time::Duration;
/// Time management functions.
///
/// The `BSP` is supposed to supply one global instance.
pub trait TimeManager {
/// The timer's resolution.
fn resolution(&self) -> Duration;
/// The uptime since power-on of the device.
///
/// This includes time consumed by firmware and bootloaders.
fn uptime(&self) -> Duration;
/// Spin for a given duration.
fn spin_for(&self, duration: Duration);
}
}
Loading…
Cancel
Save