From daee880368ef7d3b3a18e611c6b75c4beb00b5b0 Mon Sep 17 00:00:00 2001 From: James Zow Date: Mon, 25 Sep 2023 20:22:34 +0800 Subject: [PATCH] Translate Chapter 5 and modify the source file format (#187) * Translation Chapter 05 * Modify RPi3 and RPi4 unified formats --- 05_drivers_gpio_uart/README.CN.md | 138 ++++++++++++++++++++++++++++++ 05_drivers_gpio_uart/README.md | 18 ++-- 2 files changed, 147 insertions(+), 9 deletions(-) create mode 100644 05_drivers_gpio_uart/README.CN.md diff --git a/05_drivers_gpio_uart/README.CN.md b/05_drivers_gpio_uart/README.CN.md new file mode 100644 index 00000000..7999da7b --- /dev/null +++ b/05_drivers_gpio_uart/README.CN.md @@ -0,0 +1,138 @@ +# 教程 05 - 驱动程序: GPIO和UART + +## tl;dr + +- 添加了用于真实`UART`和`GPIO`控制器的驱动程序。 +- **我们将首次能够在真实硬件上运行代码** (请向下滚动查看说明)。 + +## 简介 + +在上一篇教程中,我们启用了全局安全变量,为添加第一个真实设备驱动程序奠定了基础。 +我们放弃了神奇的QEMU控制台,并引入了一个`驱动程序管理器`,允许`BSP`将设备驱动程序注册到`内核`中。 + +## 驱动程序管理器 + +第一步是向内核添加一个`driver subsystem`。相应的代码将位于`src/driver.rs`中。 +该子系统引入了`interface::DeviceDriver`,这是每个设备驱动程序都需要实现的通用特征,并为内核所知。 +在同一文件中实例化的全局`DRIVER_MANAGER`实例(类型为`DriverManager`)作为一个中央实体,可以被调用来管理内核中的所有设备驱动程序。 +例如,通过使用全局可访问的`crate::driver::driver_manager().register_driver(...)`,任何代码都可以注册一个实现了`interface::DeviceDriver`特征的具有静态生命周期的对象。 + +在内核初始化期间,调用`crate::driver::driver_manager().init_drivers(...)`将使驱动程序管理器遍历所有已注册的驱动程序, +并启动它们的初始化,并执行可选的`post-init callback`,该回调可以与驱动程序一起注册。 +例如,此机制用于在`UART`驱动程序初始化后将其切换为主系统控制台的驱动程序。 + +## BSP驱动程序实现 + +在`src/bsp/raspberrypi/driver.rs`中,函数`init()`负责注册`UART`和`GPIO`驱动程序。 +因此,在内核初始化期间,按照以下来自`main.rs`的代码,正确的顺序是: +(i)首先初始化BSP驱动程序子系统,然后(ii)调用`driver_manager()`。 + +```rust +unsafe fn kernel_init() -> ! { + // Initialize the BSP driver subsystem. + if let Err(x) = bsp::driver::init() { + panic!("Error initializing BSP driver subsystem: {}", x); + } + + // Initialize all device drivers. + driver::driver_manager().init_drivers(); + // println! is usable from here on. +``` + + + +驱动程序本身存储在`src/bsp/device_driver`中,并且可以在不同的`BSP`之间重复使用 +在这些教程中添加的第一个驱动程序是`PL011Uart`驱动程序:它实现了`console::interface::*`特征,并且从现在开始用作主系统控制台。 +第二个驱动程序是`GPIO`驱动程序,它根据需要将`RPii's`的`UART`映射(即将来自`SoC`内部的信号路由到实际的硬件引脚)。 +请注意,`GPIO`驱动程序区分**RPi 3**和**RPi 4**。它们的硬件不同,因此我们必须在软件中进行适配。 + +现在,`BSP`还包含了一个内存映射表,位于`src/bsp/raspberrypi/memory.rs`中。它提供了树莓派的`MMIO`地址, +`BSP`使用这些地址来实例化相应的设备驱动程序,以便驱动程序代码知道在内存中找到设备的寄存器的位置。 + +## SD卡启动 + +由于我们现在有了真实的`UART`输出,我们可以在真实的硬件上运行代码。 +由于前面提到的`GPIO`驱动程序的差异,构建过程在**RPi 3**和**RPi 4**之间有所区别。 +默认情况下,所有的`Makefile`目标都将为**RPi 3**构建。 +为了**RPi 4**构建,需要在每个目标前加上`BSP=rpi4`。例如: + +```console +$ BSP=rpi4 make +$ BSP=rpi4 make doc +``` + +不幸的是,QEMU目前还不支持**RPi 4**,因此`BSP=rpi4 make qemu`无法工作。 + +**准备SD卡的一些步骤在RPi3和RPi4之间有所不同,请在以下操作中小心。** + +### 通用步骤 + +1. 创建一个名为`boot`的`FAT32`分区。 +2. 在SD卡上生成一个名为`config.txt`的文件,并将以下内容写入其中: + +```txt +arm_64bit=1 +init_uart_clock=48000000 +``` +### RPi 3 + +3. 从[Raspberry Pi firmware repo](https://github.com/raspberrypi/firmware/tree/master/boot)中将以下文件复制到SD卡上: + - [bootcode.bin](https://github.com/raspberrypi/firmware/raw/master/boot/bootcode.bin) + - [fixup.dat](https://github.com/raspberrypi/firmware/raw/master/boot/fixup.dat) + - [start.elf](https://github.com/raspberrypi/firmware/raw/master/boot/start.elf) +4. 运行`make`命令。 + +### RPi 4 + +3. 从[Raspberry Pi firmware repo](https://github.com/raspberrypi/firmware/tree/master/boot)中将以下文件复制到SD卡上: + - [fixup4.dat](https://github.com/raspberrypi/firmware/raw/master/boot/fixup4.dat) + - [start4.elf](https://github.com/raspberrypi/firmware/raw/master/boot/start4.elf) + - [bcm2711-rpi-4-b.dtb](https://github.com/raspberrypi/firmware/raw/master/boot/bcm2711-rpi-4-b.dtb) +4. 运行`BSP=rpi4 make`命令。 + + +_**注意**: 如果在您的RPi4上无法正常工作,请尝试将`start4.elf`重命名为`start.elf` (不带4) +并复制到SD卡上。_ + +### 再次通用步骤 + +5. 将`kernel8.img`复制到SD卡上,并将SD卡插入RPi。 +6. 运行`miniterm` target,在主机上打开UART设备: + +```console +$ make miniterm +``` + +> ❗ **注意**: `Miniterm`假设默认的串行设备名称为`/dev/ttyUSB0`。Depending on your +> 根据您的主机操作系统,设备名称可能会有所不同。例如,在`macOS`上,它可能是 +> `/dev/tty.usbserial-0001`之类的。在这种情况下,请明确提供设备名称: + + +```console +$ DEV_SERIAL=/dev/tty.usbserial-0001 make miniterm +``` + +7. 将USB串口连接到主机PC。 + - 请参考[top-level README](../README.md#-usb-serial-output)中的接线图。 + - **注意**: TX(发送)线连接到RX(接收)引脚。 + - 确保您**没有**连接USB串口的电源引脚,只连接RX/TX和GND引脚。 +8. 将RPi连接到(USB)电源线,并观察输出。 + +```console +Miniterm 1.0 + +[MT] ⏳ Waiting for /dev/ttyUSB0 +[MT] ✅ Serial connected +[0] mingo version 0.5.0 +[1] Booting on: Raspberry Pi 3 +[2] Drivers loaded: + 1. BCM PL011 UART + 2. BCM GPIO +[3] Chars written: 117 +[4] Echoing input now +``` + +8. 通过按下ctrl-c退出。 + +## 相比之前的变化(diff) +请检查[英文版本](README.md#diff-to-previous),这是最新的。 diff --git a/05_drivers_gpio_uart/README.md b/05_drivers_gpio_uart/README.md index e6e5dd64..5e96d40a 100644 --- a/05_drivers_gpio_uart/README.md +++ b/05_drivers_gpio_uart/README.md @@ -54,8 +54,8 @@ The drivers themselves are stored in `src/bsp/device_driver`, and can be reused first driver added in these tutorials is the `PL011Uart` driver: It implements the `console::interface::*` traits and is from now on used as the main system console. The second driver is the `GPIO` driver, which pinmuxes (that is, routing signals from inside the `SoC` to actual HW -pins) the RPi's PL011 UART accordingly. Note how the `GPIO` driver differentiates between **RPi3** -and **RPi4**. Their HW is different, so we have to account for it in SW. +pins) the RPi's PL011 UART accordingly. Note how the `GPIO` driver differentiates between **RPi 3** +and **RPi 4**. Their HW is different, so we have to account for it in SW. The `BSP`s now also contain a memory map in `src/bsp/raspberrypi/memory.rs`. It provides the Raspberry's `MMIO` addresses which are used by the `BSP` to instantiate the respective device @@ -64,18 +64,18 @@ drivers, so that the driver code knows where to find the device's registers in m ## Boot it from SD card Since we have real `UART` output now, we can run the code on the real hardware. Building is -differentiated between the **RPi 3** and the **RPi4** due to before mentioned differences in the +differentiated between the **RPi 3** and the **RPi 4** due to before mentioned differences in the `GPIO` driver. By default, all `Makefile` targets will build for the **RPi 3**. In order to build -for the the **RPi4**, prepend `BSP=rpi4` to each target. For example: +for the the **RPi 4**, prepend `BSP=rpi4` to each target. For example: ```console $ BSP=rpi4 make $ BSP=rpi4 make doc ``` -Unfortunately, QEMU does not yet support the **RPi4**, so `BSP=rpi4 make qemu` won't work. +Unfortunately, QEMU does not yet support the **RPi 4**, so `BSP=rpi4 make qemu` won't work. -**Some steps for preparing the SD card differ between RPi3 and RPi4, so be careful in the +**Some steps for preparing the SD card differ between RPi 3 and RPi 4, so be careful in the following.** ### Common for both @@ -87,7 +87,7 @@ following.** arm_64bit=1 init_uart_clock=48000000 ``` -### Pi 3 +### RPi 3 3. Copy the following files from the [Raspberry Pi firmware repo](https://github.com/raspberrypi/firmware/tree/master/boot) onto the SD card: - [bootcode.bin](https://github.com/raspberrypi/firmware/raw/master/boot/bootcode.bin) @@ -95,7 +95,7 @@ init_uart_clock=48000000 - [start.elf](https://github.com/raspberrypi/firmware/raw/master/boot/start.elf) 4. Run `make`. -### Pi 4 +### RPi 4 3. Copy the following files from the [Raspberry Pi firmware repo](https://github.com/raspberrypi/firmware/tree/master/boot) onto the SD card: - [fixup4.dat](https://github.com/raspberrypi/firmware/raw/master/boot/fixup4.dat) @@ -104,7 +104,7 @@ init_uart_clock=48000000 4. Run `BSP=rpi4 make`. -_**Note**: Should it not work on your RPi4, try renaming `start4.elf` to `start.elf` (without the 4) +_**Note**: Should it not work on your RPi 4, try renaming `start4.elf` to `start.elf` (without the 4) on the SD card._ ### Common again