You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

332 lines
10 KiB
Rust

// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! PL011 UART driver.
use crate::{
bsp::device_driver::common::MMIODerefWrapper, console, cpu, driver, synchronization,
synchronization::NullLock,
};
use core::fmt;
use register::{mmio::*, register_bitfields, register_structs};
//--------------------------------------------------------------------------------------------------
// Private Definitions
//--------------------------------------------------------------------------------------------------
// PL011 UART registers.
//
// Descriptions taken from
// https://github.com/raspberrypi/documentation/files/1888662/BCM2837-ARM-Peripherals.-.Revised.-.V2-1.pdf
register_bitfields! {
u32,
/// Flag Register
FR [
/// Transmit FIFO empty. The meaning of this bit depends on the state of the FEN bit in the
/// Line Control Register, UARTLCR_ LCRH.
///
/// If the FIFO is disabled, this bit is set when the transmit holding register is empty. If
/// the FIFO is enabled, the TXFE bit is set when the transmit FIFO is empty. This bit does
/// not indicate if there is data in the transmit shift register.
TXFE OFFSET(7) NUMBITS(1) [],
/// Transmit FIFO full. The meaning of this bit depends on the state of the FEN bit in the
/// UARTLCR_ LCRH Register.
///
/// If the FIFO is disabled, this bit is set when the transmit holding register is full. If
/// the FIFO is enabled, the TXFF bit is set when the transmit FIFO is full.
TXFF OFFSET(5) NUMBITS(1) [],
/// Receive FIFO empty. The meaning of this bit depends on the state of the FEN bit in the
/// UARTLCR_H Register.
///
/// If the FIFO is disabled, this bit is set when the receive holding register is empty. If
/// the FIFO is enabled, the RXFE bit is set when the receive FIFO is empty.
RXFE OFFSET(4) NUMBITS(1) []
],
/// Integer Baud rate divisor
IBRD [
/// Integer Baud rate divisor
IBRD OFFSET(0) NUMBITS(16) []
],
/// Fractional Baud rate divisor
FBRD [
/// Fractional Baud rate divisor
FBRD OFFSET(0) NUMBITS(6) []
],
/// Line Control register
LCRH [
/// Word length. These bits indicate the number of data bits transmitted or received in a
/// frame.
WLEN OFFSET(5) NUMBITS(2) [
FiveBit = 0b00,
SixBit = 0b01,
SevenBit = 0b10,
EightBit = 0b11
],
/// Enable FIFOs:
///
/// 0 = FIFOs are disabled (character mode) that is, the FIFOs become 1-byte-deep holding
/// registers
///
/// 1 = transmit and receive FIFO buffers are enabled (FIFO mode).
FEN OFFSET(4) NUMBITS(1) [
FifosDisabled = 0,
FifosEnabled = 1
]
],
/// Control Register
CR [
/// Receive enable. If this bit is set to 1, the receive section of the UART is enabled.
/// Data reception occurs for UART signals. When the UART is disabled in the middle of
/// reception, it completes the current character before stopping.
RXE OFFSET(9) NUMBITS(1) [
Disabled = 0,
Enabled = 1
],
/// Transmit enable. If this bit is set to 1, the transmit section of the UART is enabled.
/// Data transmission occurs for UART signals. When the UART is disabled in the middle of
/// transmission, it completes the current character before stopping.
TXE OFFSET(8) NUMBITS(1) [
Disabled = 0,
Enabled = 1
],
/// UART enable
UARTEN OFFSET(0) NUMBITS(1) [
/// If the UART is disabled in the middle of transmission or reception, it completes the
/// current character before stopping.
Disabled = 0,
Enabled = 1
]
],
/// Interrupt Clear Register
ICR [
/// Meta field for all pending interrupts
ALL OFFSET(0) NUMBITS(11) []
]
}
register_structs! {
#[allow(non_snake_case)]
pub RegisterBlock {
(0x00 => DR: ReadWrite<u32>),
(0x04 => _reserved1),
(0x18 => FR: ReadOnly<u32, FR::Register>),
(0x1c => _reserved2),
(0x24 => IBRD: WriteOnly<u32, IBRD::Register>),
(0x28 => FBRD: WriteOnly<u32, FBRD::Register>),
(0x2c => LCRH: WriteOnly<u32, LCRH::Register>),
(0x30 => CR: WriteOnly<u32, CR::Register>),
(0x34 => _reserved3),
(0x44 => ICR: WriteOnly<u32, ICR::Register>),
(0x48 => @END),
}
}
/// Abstraction for the associated MMIO registers.
type Registers = MMIODerefWrapper<RegisterBlock>;
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
pub struct PL011UartInner {
registers: Registers,
chars_written: usize,
chars_read: usize,
}
// Export the inner struct so that BSPs can use it for the panic handler.
pub use PL011UartInner as PanicUart;
/// Representation of the UART.
pub struct PL011Uart {
inner: NullLock<PL011UartInner>,
}
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
impl PL011UartInner {
/// Create an instance.
///
/// # Safety
///
/// - The user must ensure to provide a correct MMIO start address.
pub const unsafe fn new(mmio_start_addr: usize) -> Self {
Self {
registers: Registers::new(mmio_start_addr),
chars_written: 0,
chars_read: 0,
}
}
/// Set up baud rate and characteristics.
///
/// The calculation for the BRD given a target rate of 2300400 and a clock set to 48 MHz is:
/// `(48_000_000/16)/230400 = 13,02083`. `13` goes to the `IBRD` (integer field). The `FBRD`
/// (fractional field) is only 6 bits so `0,0208*64 = 1,3312 rounded to 1` will give the best
/// approximation we can get. A 5 % error margin is acceptable for UART and we're now at 0,01 %.
///
/// This results in 8N1 and 230400 baud (we set the clock to 48 MHz in config.txt).
pub fn init(&mut self) {
// Turn it off temporarily.
self.registers.CR.set(0);
self.registers.ICR.write(ICR::ALL::CLEAR);
self.registers.IBRD.write(IBRD::IBRD.val(13));
self.registers.FBRD.write(FBRD::FBRD.val(1));
self.registers
.LCRH
.write(LCRH::WLEN::EightBit + LCRH::FEN::FifosEnabled); // 8N1 + Fifo on
self.registers
.CR
.write(CR::UARTEN::Enabled + CR::TXE::Enabled + CR::RXE::Enabled);
}
/// Send a character.
fn write_char(&mut self, c: char) {
// Spin while TX FIFO full is set, waiting for an empty slot.
while self.registers.FR.matches_all(FR::TXFF::SET) {
cpu::nop();
}
// Write the character to the buffer.
self.registers.DR.set(c as u32);
self.chars_written += 1;
}
}
/// Implementing `core::fmt::Write` enables usage of the `format_args!` macros, which in turn are
/// used to implement the `kernel`'s `print!` and `println!` macros. By implementing `write_str()`,
/// we get `write_fmt()` automatically.
///
/// The function takes an `&mut self`, so it must be implemented for the inner struct.
///
/// See [`src/print.rs`].
///
/// [`src/print.rs`]: ../../print/index.html
impl fmt::Write for PL011UartInner {
fn write_str(&mut self, s: &str) -> fmt::Result {
for c in s.chars() {
self.write_char(c);
}
Ok(())
}
}
impl PL011Uart {
/// # Safety
///
/// - The user must ensure to provide a correct MMIO start address.
pub const unsafe fn new(mmio_start_addr: usize) -> Self {
Self {
inner: NullLock::new(PL011UartInner::new(mmio_start_addr)),
}
}
}
//------------------------------------------------------------------------------
// OS Interface Code
//------------------------------------------------------------------------------
use synchronization::interface::Mutex;
impl driver::interface::DeviceDriver for PL011Uart {
fn compatible(&self) -> &'static str {
"BCM PL011 UART"
}
unsafe fn init(&self) -> Result<(), &'static str> {
let mut r = &self.inner;
r.lock(|inner| inner.init());
Ok(())
}
}
impl console::interface::Write for PL011Uart {
/// Passthrough of `args` to the `core::fmt::Write` implementation, but guarded by a Mutex to
/// serialize access.
fn write_char(&self, c: char) {
let mut r = &self.inner;
r.lock(|inner| inner.write_char(c));
}
fn write_fmt(&self, args: core::fmt::Arguments) -> fmt::Result {
// Fully qualified syntax for the call to `core::fmt::Write::write:fmt()` to increase
// readability.
let mut r = &self.inner;
r.lock(|inner| fmt::Write::write_fmt(inner, args))
}
fn flush(&self) {
// Spin until TX FIFO empty is set.
let mut r = &self.inner;
r.lock(|inner| {
while !inner.registers.FR.matches_all(FR::TXFE::SET) {
cpu::nop();
}
});
}
}
impl console::interface::Read for PL011Uart {
fn read_char(&self) -> char {
let mut r = &self.inner;
r.lock(|inner| {
// Spin while RX FIFO empty is set.
while inner.registers.FR.matches_all(FR::RXFE::SET) {
cpu::nop();
}
// Read one character.
let mut ret = inner.registers.DR.get() as u8 as char;
// Convert carrige return to newline.
if ret == '\r' {
ret = '\n'
}
// Update statistics.
inner.chars_read += 1;
ret
})
}
fn clear(&self) {
let mut r = &self.inner;
r.lock(|inner| {
// Read from the RX FIFO until it is indicating empty.
while !inner.registers.FR.matches_all(FR::RXFE::SET) {
inner.registers.DR.get();
}
})
}
}
impl console::interface::Statistics for PL011Uart {
fn chars_written(&self) -> usize {
let mut r = &self.inner;
r.lock(|inner| inner.chars_written)
}
fn chars_read(&self) -> usize {
let mut r = &self.inner;
r.lock(|inner| inner.chars_read)
}
}