You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

478 lines
15 KiB
Rust

// SPDX-License-Identifier: MIT OR Apache-2.0
//
// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
//! PL011 UART driver.
use crate::{
bsp, bsp::device_driver::common::MMIODerefWrapper, console, cpu, driver, exception, memory,
memory::mmu::Physical, synchronization, synchronization::IRQSafeNullLock,
};
use core::{
fmt,
sync::atomic::{AtomicUsize, Ordering},
};
use register::{mmio::*, register_bitfields, register_structs};
//--------------------------------------------------------------------------------------------------
// Private Definitions
//--------------------------------------------------------------------------------------------------
// PL011 UART registers.
//
// Descriptions taken from
// https://github.com/raspberrypi/documentation/files/1888662/BCM2837-ARM-Peripherals.-.Revised.-.V2-1.pdf
register_bitfields! {
u32,
/// Flag Register
FR [
/// Transmit FIFO empty. The meaning of this bit depends on the state of the FEN bit in the
/// Line Control Register, UARTLCR_ LCRH.
///
/// If the FIFO is disabled, this bit is set when the transmit holding register is empty. If
/// the FIFO is enabled, the TXFE bit is set when the transmit FIFO is empty. This bit does
/// not indicate if there is data in the transmit shift register.
TXFE OFFSET(7) NUMBITS(1) [],
/// Transmit FIFO full. The meaning of this bit depends on the state of the FEN bit in the
/// UARTLCR_ LCRH Register.
///
/// If the FIFO is disabled, this bit is set when the transmit holding register is full. If
/// the FIFO is enabled, the TXFF bit is set when the transmit FIFO is full.
TXFF OFFSET(5) NUMBITS(1) [],
/// Receive FIFO empty. The meaning of this bit depends on the state of the FEN bit in the
/// UARTLCR_H Register.
///
/// If the FIFO is disabled, this bit is set when the receive holding register is empty. If
/// the FIFO is enabled, the RXFE bit is set when the receive FIFO is empty.
RXFE OFFSET(4) NUMBITS(1) []
],
/// Integer Baud rate divisor
IBRD [
/// Integer Baud rate divisor
IBRD OFFSET(0) NUMBITS(16) []
],
/// Fractional Baud rate divisor
FBRD [
/// Fractional Baud rate divisor
FBRD OFFSET(0) NUMBITS(6) []
],
/// Line Control register
LCRH [
/// Word length. These bits indicate the number of data bits transmitted or received in a
/// frame.
WLEN OFFSET(5) NUMBITS(2) [
FiveBit = 0b00,
SixBit = 0b01,
SevenBit = 0b10,
EightBit = 0b11
],
/// Enable FIFOs:
///
/// 0 = FIFOs are disabled (character mode) that is, the FIFOs become 1-byte-deep holding
/// registers
///
/// 1 = transmit and receive FIFO buffers are enabled (FIFO mode).
FEN OFFSET(4) NUMBITS(1) [
FifosDisabled = 0,
FifosEnabled = 1
]
],
/// Control Register
CR [
/// Receive enable. If this bit is set to 1, the receive section of the UART is enabled.
/// Data reception occurs for UART signals. When the UART is disabled in the middle of
/// reception, it completes the current character before stopping.
RXE OFFSET(9) NUMBITS(1) [
Disabled = 0,
Enabled = 1
],
/// Transmit enable. If this bit is set to 1, the transmit section of the UART is enabled.
/// Data transmission occurs for UART signals. When the UART is disabled in the middle of
/// transmission, it completes the current character before stopping.
TXE OFFSET(8) NUMBITS(1) [
Disabled = 0,
Enabled = 1
],
/// UART enable
UARTEN OFFSET(0) NUMBITS(1) [
/// If the UART is disabled in the middle of transmission or reception, it completes the
/// current character before stopping.
Disabled = 0,
Enabled = 1
]
],
/// Interrupt FIFO Level Select Register
IFLS [
/// Receive interrupt FIFO level select. The trigger points for the receive interrupt are as
/// follows.
RXIFLSEL OFFSET(3) NUMBITS(5) [
OneEigth = 0b000,
OneQuarter = 0b001,
OneHalf = 0b010,
ThreeQuarters = 0b011,
SevenEights = 0b100
]
],
/// Interrupt Mask Set Clear Register
IMSC [
/// Receive timeout interrupt mask. A read returns the current mask for the UARTRTINTR
/// interrupt. On a write of 1, the mask of the interrupt is set. A write of 0 clears the
/// mask.
RTIM OFFSET(6) NUMBITS(1) [
Disabled = 0,
Enabled = 1
],
/// Receive interrupt mask. A read returns the current mask for the UARTRXINTR interrupt. On
/// a write of 1, the mask of the interrupt is set. A write of 0 clears the mask.
RXIM OFFSET(4) NUMBITS(1) [
Disabled = 0,
Enabled = 1
]
],
/// Masked Interrupt Status Register
MIS [
/// Receive timeout masked interrupt status. Returns the masked interrupt state of the
/// UARTRTINTR interrupt.
RTMIS OFFSET(6) NUMBITS(1) [],
/// Receive masked interrupt status. Returns the masked interrupt state of the UARTRXINTR
/// interrupt.
RXMIS OFFSET(4) NUMBITS(1) []
],
/// Interrupt Clear Register
ICR [
/// Meta field for all pending interrupts
ALL OFFSET(0) NUMBITS(11) []
]
}
register_structs! {
#[allow(non_snake_case)]
pub RegisterBlock {
(0x00 => DR: ReadWrite<u32>),
(0x04 => _reserved1),
(0x18 => FR: ReadOnly<u32, FR::Register>),
(0x1c => _reserved2),
(0x24 => IBRD: WriteOnly<u32, IBRD::Register>),
(0x28 => FBRD: WriteOnly<u32, FBRD::Register>),
(0x2c => LCRH: WriteOnly<u32, LCRH::Register>),
(0x30 => CR: WriteOnly<u32, CR::Register>),
(0x34 => IFLS: ReadWrite<u32, IFLS::Register>),
(0x38 => IMSC: ReadWrite<u32, IMSC::Register>),
(0x3C => _reserved3),
(0x40 => MIS: ReadOnly<u32, MIS::Register>),
(0x44 => ICR: WriteOnly<u32, ICR::Register>),
(0x48 => @END),
}
}
/// Abstraction for the associated MMIO registers.
type Registers = MMIODerefWrapper<RegisterBlock>;
#[derive(PartialEq)]
enum BlockingMode {
Blocking,
NonBlocking,
}
//--------------------------------------------------------------------------------------------------
// Public Definitions
//--------------------------------------------------------------------------------------------------
pub struct PL011UartInner {
registers: Registers,
chars_written: usize,
chars_read: usize,
}
// Export the inner struct so that BSPs can use it for the panic handler.
pub use PL011UartInner as PanicUart;
/// Representation of the UART.
pub struct PL011Uart {
phys_mmio_descriptor: memory::mmu::MMIODescriptor<Physical>,
virt_mmio_start_addr: AtomicUsize,
inner: IRQSafeNullLock<PL011UartInner>,
irq_number: bsp::device_driver::IRQNumber,
}
//--------------------------------------------------------------------------------------------------
// Public Code
//--------------------------------------------------------------------------------------------------
impl PL011UartInner {
/// Create an instance.
///
/// # Safety
///
/// - The user must ensure to provide a correct MMIO start address.
pub const unsafe fn new(mmio_start_addr: usize) -> Self {
Self {
registers: Registers::new(mmio_start_addr),
chars_written: 0,
chars_read: 0,
}
}
/// Set up baud rate and characteristics.
///
/// The calculation for the BRD given a target rate of 2300400 and a clock set to 48 MHz is:
/// `(48_000_000/16)/230400 = 13,02083`. `13` goes to the `IBRD` (integer field). The `FBRD`
/// (fractional field) is only 6 bits so `0,0208*64 = 1,3312 rounded to 1` will give the best
/// approximation we can get. A 5 % error margin is acceptable for UART and we're now at 0,01 %.
///
/// This results in 8N1 and 230400 baud (we set the clock to 48 MHz in config.txt).
///
/// # Safety
///
/// - The user must ensure to provide a correct MMIO start address.
pub unsafe fn init(&mut self, new_mmio_start_addr: Option<usize>) -> Result<(), &'static str> {
if let Some(addr) = new_mmio_start_addr {
self.registers = Registers::new(addr);
}
// Turn it off temporarily.
self.registers.CR.set(0);
self.registers.ICR.write(ICR::ALL::CLEAR);
self.registers.IBRD.write(IBRD::IBRD.val(13));
self.registers.FBRD.write(FBRD::FBRD.val(1));
self.registers
.LCRH
.write(LCRH::WLEN::EightBit + LCRH::FEN::FifosEnabled); // 8N1 + Fifo on
self.registers.IFLS.write(IFLS::RXIFLSEL::OneEigth); // RX FIFO fill level at 1/8
self.registers
.IMSC
.write(IMSC::RXIM::Enabled + IMSC::RTIM::Enabled); // RX IRQ + RX timeout IRQ
self.registers
.CR
.write(CR::UARTEN::Enabled + CR::TXE::Enabled + CR::RXE::Enabled);
Ok(())
}
/// Send a character.
fn write_char(&mut self, c: char) {
// Spin while TX FIFO full is set, waiting for an empty slot.
while self.registers.FR.matches_all(FR::TXFF::SET) {
cpu::nop();
}
// Write the character to the buffer.
self.registers.DR.set(c as u32);
self.chars_written += 1;
}
/// Retrieve a character.
fn read_char_converting(&mut self, blocking_mode: BlockingMode) -> Option<char> {
// If RX FIFO is empty,
if self.registers.FR.matches_all(FR::RXFE::SET) {
// immediately return in non-blocking mode.
if blocking_mode == BlockingMode::NonBlocking {
return None;
}
// Otherwise, wait until a char was received.
while self.registers.FR.matches_all(FR::RXFE::SET) {
cpu::nop();
}
}
// Read one character.
let mut ret = self.registers.DR.get() as u8 as char;
// Convert carrige return to newline.
if ret == '\r' {
ret = '\n'
}
// Update statistics.
self.chars_read += 1;
Some(ret)
}
}
/// Implementing `core::fmt::Write` enables usage of the `format_args!` macros, which in turn are
/// used to implement the `kernel`'s `print!` and `println!` macros. By implementing `write_str()`,
/// we get `write_fmt()` automatically.
///
/// The function takes an `&mut self`, so it must be implemented for the inner struct.
///
/// See [`src/print.rs`].
///
/// [`src/print.rs`]: ../../print/index.html
impl fmt::Write for PL011UartInner {
fn write_str(&mut self, s: &str) -> fmt::Result {
for c in s.chars() {
self.write_char(c);
}
Ok(())
}
}
impl PL011Uart {
/// Create an instance.
///
/// # Safety
///
/// - The user must ensure to provide correct MMIO descriptors.
/// - The user must ensure to provide correct IRQ numbers.
pub const unsafe fn new(
phys_mmio_descriptor: memory::mmu::MMIODescriptor<Physical>,
irq_number: bsp::device_driver::IRQNumber,
) -> Self {
Self {
phys_mmio_descriptor,
virt_mmio_start_addr: AtomicUsize::new(0),
inner: IRQSafeNullLock::new(PL011UartInner::new(
phys_mmio_descriptor.start_addr().into_usize(),
)),
irq_number,
}
}
}
//------------------------------------------------------------------------------
// OS Interface Code
//------------------------------------------------------------------------------
use synchronization::interface::Mutex;
impl driver::interface::DeviceDriver for PL011Uart {
fn compatible(&self) -> &'static str {
"BCM PL011 UART"
}
unsafe fn init(&self) -> Result<(), &'static str> {
let virt_addr =
memory::mmu::kernel_map_mmio(self.compatible(), &self.phys_mmio_descriptor)?;
let mut r = &self.inner;
r.lock(|inner| inner.init(Some(virt_addr.into_usize())))?;
self.virt_mmio_start_addr
.store(virt_addr.into_usize(), Ordering::Relaxed);
Ok(())
}
fn register_and_enable_irq_handler(&'static self) -> Result<(), &'static str> {
use bsp::exception::asynchronous::irq_manager;
use exception::asynchronous::{interface::IRQManager, IRQDescriptor};
let descriptor = IRQDescriptor {
name: "BCM PL011 UART",
handler: self,
};
irq_manager().register_handler(self.irq_number, descriptor)?;
irq_manager().enable(self.irq_number);
Ok(())
}
fn virt_mmio_start_addr(&self) -> Option<usize> {
let addr = self.virt_mmio_start_addr.load(Ordering::Relaxed);
if addr == 0 {
return None;
}
Some(addr)
}
}
impl console::interface::Write for PL011Uart {
/// Passthrough of `args` to the `core::fmt::Write` implementation, but guarded by a Mutex to
/// serialize access.
fn write_char(&self, c: char) {
let mut r = &self.inner;
r.lock(|inner| inner.write_char(c));
}
fn write_fmt(&self, args: core::fmt::Arguments) -> fmt::Result {
// Fully qualified syntax for the call to `core::fmt::Write::write:fmt()` to increase
// readability.
let mut r = &self.inner;
r.lock(|inner| fmt::Write::write_fmt(inner, args))
}
fn flush(&self) {
// Spin until TX FIFO empty is set.
let mut r = &self.inner;
r.lock(|inner| {
while !inner.registers.FR.matches_all(FR::TXFE::SET) {
cpu::nop();
}
});
}
}
impl console::interface::Read for PL011Uart {
fn read_char(&self) -> char {
let mut r = &self.inner;
r.lock(|inner| inner.read_char_converting(BlockingMode::Blocking).unwrap())
}
fn clear(&self) {
let mut r = &self.inner;
r.lock(|inner| {
// Read from the RX FIFO until it is indicating empty.
while !inner.registers.FR.matches_all(FR::RXFE::SET) {
inner.registers.DR.get();
}
})
}
}
impl console::interface::Statistics for PL011Uart {
fn chars_written(&self) -> usize {
let mut r = &self.inner;
r.lock(|inner| inner.chars_written)
}
fn chars_read(&self) -> usize {
let mut r = &self.inner;
r.lock(|inner| inner.chars_read)
}
}
impl exception::asynchronous::interface::IRQHandler for PL011Uart {
fn handle(&self) -> Result<(), &'static str> {
let mut r = &self.inner;
r.lock(|inner| {
let pending = inner.registers.MIS.extract();
// Clear all pending IRQs.
inner.registers.ICR.write(ICR::ALL::CLEAR);
// Check for any kind of RX interrupt.
if pending.matches_any(MIS::RXMIS::SET + MIS::RTMIS::SET) {
// Echo any received characters.
while let Some(c) = inner.read_char_converting(BlockingMode::NonBlocking) {
inner.write_char(c)
}
}
});
Ok(())
}
}