You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Andre Richter f13e6e4513
Change to new aarch64-unknown-none-softloat target.
Also, add safety docs where demanded by clippy.
5 years ago
..
.cargo Change to new aarch64-unknown-none-softloat target. 5 years ago
src 01_bareminimum: Use panic-abort crate instead of own handler 6 years ago
Cargo.lock Update toolchain and bump dependency versions 5 years ago
Cargo.toml 🎉 Update to Rust 2018 🎉 5 years ago
Makefile Change to new aarch64-unknown-none-softloat target. 5 years ago
README.md Change to new aarch64-unknown-none-softloat target. 5 years ago
kernel8 Change to new aarch64-unknown-none-softloat target. 5 years ago
kernel8.img Add tutorial 01_bareminimum 6 years ago
link.ld Sync with the newest Embedonomicon 6 years ago

README.md

Tutorial 01 - Bare Minimum

Okay, we're not going to do much here, just test our toolchain. The resulting kernel8.img should boot on the Raspberry Pi 3, and stop all CPU cores in an infinite waiting loop. You can check that by running

ferris@box:~$ make qemu
... some output removed for clearity: ...
----------------
IN:
0x00080000:  d503205f  wfe
0x00080004:  17ffffff  b        #0x80000

Crate setup

In this tutorial, we are compiling a kernel that is in the end only executing a single assembly instruction which we program with an assembly file.

However, since we want to use the toolchain that is delivered with rustup as much as possible, we are already setting up a Rust crate. This allows us to use rustc and LLVM's lld.ld linker to process our assembly file.

Target

The Raspberry Pi 3 features a processor that uses ARM's AArch64 architecture. Conveniently, Rust already provides a generic target for bare-metal aarch64 code that we can leverage. It is called aarch64-unknown-none-softfloat.

In the Makefile, we select this target in various places by passing it to cargo using the --target cmdline argument.

Additionally, we provide a config file in .cargo/config were we make further specializations:

[target.aarch64-unknown-none-softfloat]
rustflags = [
  "-C", "link-arg=-Tlink.ld",
  "-C", "target-cpu=cortex-a53",
]

The first line tells rustc to use our custom link.ld linker script. The second argument specifies the exact CPU type that is used on Raspberry Pi 3, so that the compiler can optimize for it.

The target itself tells the compiler already to not use floating point operations, which is hinted by the -softfloat appendix. This is a common choice when writing an operating system kernel. If floating point is not explicitly disabled, it is possible that the compiler uses auto-vectorization to optimize, for example, operations on array data structures. This would implicitly result in use of floating point registers and operations. However, since it is very costly to save and restore floating point registers during context-switches, use of fp is usually disabled from the get go to save the cycles and optimize the kernel for fast context switching.

Since the aarch64-unknown-none-softfloat target is not shipped with an associated precompiled standard library, and since we anyways modify the target via the .cargo/config file, we are using cargo-xbuild to compile our own standard library. This way, we can ensure that our bare-metal code is optimized throughout.

We just set the base address where our kernel8.img will be loaded, and we put the only section we have there, which is .text.boot. Important note, for AArch64 the load address is 0x80_000, and not 0x80_00 as with AArch32.

Makefile

Our Makefile has a few useful targets:

  • kernel8 compiles the crate either in release or debug mode. For the latter, add DEBUG=1 before invoking make, e.g. DEBUG=1 make
  • kernel8.img uses cargo objcopy to generate our kernel binary. Citing the binutils documentation:
    • "When objcopy generates a raw binary file, it will essentially produce a memory dump of the contents of the input object file. All symbols and relocation information will be discarded. The memory dump will start at the load address of the lowest section copied into the output file."
  • qemu loads our kernel into an emulated RPi3, and shows as output the assembler blocks that are executed. This happens in a docker container.

main.rs

We define the crate to not use the standard library (#![no_std]), indicate that it does not have a main function via #![no_main], and also define a stub for the panic_fmt() handler, which is a requirement for no_std crates. We do this by pulling in the panic-abort crate.

In summary, we (mis)use main.rs as a wrapper to process our assembly file via rustc. The assembly file iself is included with the global_asm!() macro.

boot_cores.S

When the control is passed to kernel8.img, the environment is not ready yet for Rust. Therefore we must implement a small preamble in assembly, no Rust for now.

All we do is executing wfe, an instruction that puts the CPU cores to sleep until an asynchronous event occurs. If that happens, we jump right back to wfe again.

Note that the CPU has 4 cores. All of them will execute the same infinite loop for now.