You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
koreader/frontend/ui/gesturerange.lua

68 lines
2.0 KiB
Lua

local TimeVal = require("ui/timeval")
local GestureRange = {
-- gesture matching type
ges = nil,
The great Input/GestureDetector/TimeVal spring cleanup (a.k.a., a saner main loop) (#7415) * ReaderDictionary: Port delay computations to TimeVal * ReaderHighlight: Port delay computations to TimeVal * ReaderView: Port delay computations to TimeVal * Android: Reset gesture detection state on APP_CMD_TERM_WINDOW. This prevents potentially being stuck in bogus gesture states when switching apps. * GestureDetector: * Port delay computations to TimeVal * Fixed delay computations to handle time warps (large and negative deltas). * Simplified timed callback handling to invalidate timers much earlier, preventing accumulating useless timers that no longer have any chance of ever detecting a gesture. * Fixed state clearing to handle the actual effective slots, instead of hard-coding slot 0 & slot 1. * Simplified timed callback handling in general, and added support for a timerfd backend for better performance and accuracy. * The improved timed callback handling allows us to detect and honor (as much as possible) the three possible clock sources usable by Linux evdev events. The only case where synthetic timestamps are used (and that only to handle timed callbacks) is limited to non-timerfd platforms where input events use a clock source that is *NOT* MONOTONIC. AFAICT, that's pretty much... PocketBook, and that's it? * Input: * Use the <linux/input.h> FFI module instead of re-declaring every constant * Fixed (verbose) debug logging of input events to actually translate said constants properly. * Completely reset gesture detection state on suspend. This should prevent bogus gesture detection on resume. * Refactored the waitEvent loop to make it easier to comprehend (hopefully) and much more efficient. Of specific note, it no longer does a crazy select spam every 100µs, instead computing and relying on sane timeouts, as afforded by switching the UI event/input loop to the MONOTONIC time base, and the refactored timed callbacks in GestureDetector. * reMarkable: Stopped enforcing synthetic timestamps on input events, as it should no longer be necessary. * TimeVal: * Refactored and simplified, especially as far as metamethods are concerned (based on <bsd/sys/time.h>). * Added a host of new methods to query the various POSIX clock sources, and made :now default to MONOTONIC. * Removed the debug guard in __sub, as time going backwards can be a perfectly normal occurrence. * New methods: * Clock sources: :realtime, :monotonic, :monotonic_coarse, :realtime_coarse, :boottime * Utility: :tonumber, :tousecs, :tomsecs, :fromnumber, :isPositive, :isZero * UIManager: * Ported event loop & scheduling to TimeVal, and switched to the MONOTONIC time base. This ensures reliable and consistent scheduling, as time is ensured never to go backwards. * Added a :getTime() method, that returns a cached TimeVal:now(), updated at the top of every UI frame. It's used throughout the codebase to cadge a syscall in circumstances where we are guaranteed that a syscall would return a mostly identical value, because very few time has passed. The only code left that does live syscalls does it because it's actually necessary for accuracy, and the only code left that does that in a REALTIME time base is code that *actually* deals with calendar time (e.g., Statistics). * DictQuickLookup: Port delay computations to TimeVal * FootNoteWidget: Port delay computations to TimeVal * HTMLBoxWidget: Port delay computations to TimeVal * Notification: Port delay computations to TimeVal * TextBoxWidget: Port delay computations to TimeVal * AutoSuspend: Port to TimeVal * AutoTurn: * Fix it so that settings are actually honored. * Port to TimeVal * BackgroundRunner: Port to TimeVal * Calibre: Port benchmarking code to TimeVal * BookInfoManager: Removed unnecessary yield in the metadata extraction subprocess now that subprocesses get scheduled properly. * All in all, these changes reduced the CPU cost of a single tap by a factor of ten (!), and got rid of an insane amount of weird poll/wakeup cycles that must have been hell on CPU schedulers and batteries..
3 years ago
-- spatial range, limits the gesture emitting position
range = nil,
The great Input/GestureDetector/TimeVal spring cleanup (a.k.a., a saner main loop) (#7415) * ReaderDictionary: Port delay computations to TimeVal * ReaderHighlight: Port delay computations to TimeVal * ReaderView: Port delay computations to TimeVal * Android: Reset gesture detection state on APP_CMD_TERM_WINDOW. This prevents potentially being stuck in bogus gesture states when switching apps. * GestureDetector: * Port delay computations to TimeVal * Fixed delay computations to handle time warps (large and negative deltas). * Simplified timed callback handling to invalidate timers much earlier, preventing accumulating useless timers that no longer have any chance of ever detecting a gesture. * Fixed state clearing to handle the actual effective slots, instead of hard-coding slot 0 & slot 1. * Simplified timed callback handling in general, and added support for a timerfd backend for better performance and accuracy. * The improved timed callback handling allows us to detect and honor (as much as possible) the three possible clock sources usable by Linux evdev events. The only case where synthetic timestamps are used (and that only to handle timed callbacks) is limited to non-timerfd platforms where input events use a clock source that is *NOT* MONOTONIC. AFAICT, that's pretty much... PocketBook, and that's it? * Input: * Use the <linux/input.h> FFI module instead of re-declaring every constant * Fixed (verbose) debug logging of input events to actually translate said constants properly. * Completely reset gesture detection state on suspend. This should prevent bogus gesture detection on resume. * Refactored the waitEvent loop to make it easier to comprehend (hopefully) and much more efficient. Of specific note, it no longer does a crazy select spam every 100µs, instead computing and relying on sane timeouts, as afforded by switching the UI event/input loop to the MONOTONIC time base, and the refactored timed callbacks in GestureDetector. * reMarkable: Stopped enforcing synthetic timestamps on input events, as it should no longer be necessary. * TimeVal: * Refactored and simplified, especially as far as metamethods are concerned (based on <bsd/sys/time.h>). * Added a host of new methods to query the various POSIX clock sources, and made :now default to MONOTONIC. * Removed the debug guard in __sub, as time going backwards can be a perfectly normal occurrence. * New methods: * Clock sources: :realtime, :monotonic, :monotonic_coarse, :realtime_coarse, :boottime * Utility: :tonumber, :tousecs, :tomsecs, :fromnumber, :isPositive, :isZero * UIManager: * Ported event loop & scheduling to TimeVal, and switched to the MONOTONIC time base. This ensures reliable and consistent scheduling, as time is ensured never to go backwards. * Added a :getTime() method, that returns a cached TimeVal:now(), updated at the top of every UI frame. It's used throughout the codebase to cadge a syscall in circumstances where we are guaranteed that a syscall would return a mostly identical value, because very few time has passed. The only code left that does live syscalls does it because it's actually necessary for accuracy, and the only code left that does that in a REALTIME time base is code that *actually* deals with calendar time (e.g., Statistics). * DictQuickLookup: Port delay computations to TimeVal * FootNoteWidget: Port delay computations to TimeVal * HTMLBoxWidget: Port delay computations to TimeVal * Notification: Port delay computations to TimeVal * TextBoxWidget: Port delay computations to TimeVal * AutoSuspend: Port to TimeVal * AutoTurn: * Fix it so that settings are actually honored. * Port to TimeVal * BackgroundRunner: Port to TimeVal * Calibre: Port benchmarking code to TimeVal * BookInfoManager: Removed unnecessary yield in the metadata extraction subprocess now that subprocesses get scheduled properly. * All in all, these changes reduced the CPU cost of a single tap by a factor of ten (!), and got rid of an insane amount of weird poll/wakeup cycles that must have been hell on CPU schedulers and batteries..
3 years ago
-- temporal range, limits the gesture emitting rate
rate = nil,
-- scale limits of this gesture
scale = nil,
}
function GestureRange:new(from_o)
local o = from_o or {}
setmetatable(o, self)
self.__index = self
return o
end
function GestureRange:match(gs)
if gs.ges ~= self.ges then
return false
end
if self.range then
The great Input/GestureDetector/TimeVal spring cleanup (a.k.a., a saner main loop) (#7415) * ReaderDictionary: Port delay computations to TimeVal * ReaderHighlight: Port delay computations to TimeVal * ReaderView: Port delay computations to TimeVal * Android: Reset gesture detection state on APP_CMD_TERM_WINDOW. This prevents potentially being stuck in bogus gesture states when switching apps. * GestureDetector: * Port delay computations to TimeVal * Fixed delay computations to handle time warps (large and negative deltas). * Simplified timed callback handling to invalidate timers much earlier, preventing accumulating useless timers that no longer have any chance of ever detecting a gesture. * Fixed state clearing to handle the actual effective slots, instead of hard-coding slot 0 & slot 1. * Simplified timed callback handling in general, and added support for a timerfd backend for better performance and accuracy. * The improved timed callback handling allows us to detect and honor (as much as possible) the three possible clock sources usable by Linux evdev events. The only case where synthetic timestamps are used (and that only to handle timed callbacks) is limited to non-timerfd platforms where input events use a clock source that is *NOT* MONOTONIC. AFAICT, that's pretty much... PocketBook, and that's it? * Input: * Use the <linux/input.h> FFI module instead of re-declaring every constant * Fixed (verbose) debug logging of input events to actually translate said constants properly. * Completely reset gesture detection state on suspend. This should prevent bogus gesture detection on resume. * Refactored the waitEvent loop to make it easier to comprehend (hopefully) and much more efficient. Of specific note, it no longer does a crazy select spam every 100µs, instead computing and relying on sane timeouts, as afforded by switching the UI event/input loop to the MONOTONIC time base, and the refactored timed callbacks in GestureDetector. * reMarkable: Stopped enforcing synthetic timestamps on input events, as it should no longer be necessary. * TimeVal: * Refactored and simplified, especially as far as metamethods are concerned (based on <bsd/sys/time.h>). * Added a host of new methods to query the various POSIX clock sources, and made :now default to MONOTONIC. * Removed the debug guard in __sub, as time going backwards can be a perfectly normal occurrence. * New methods: * Clock sources: :realtime, :monotonic, :monotonic_coarse, :realtime_coarse, :boottime * Utility: :tonumber, :tousecs, :tomsecs, :fromnumber, :isPositive, :isZero * UIManager: * Ported event loop & scheduling to TimeVal, and switched to the MONOTONIC time base. This ensures reliable and consistent scheduling, as time is ensured never to go backwards. * Added a :getTime() method, that returns a cached TimeVal:now(), updated at the top of every UI frame. It's used throughout the codebase to cadge a syscall in circumstances where we are guaranteed that a syscall would return a mostly identical value, because very few time has passed. The only code left that does live syscalls does it because it's actually necessary for accuracy, and the only code left that does that in a REALTIME time base is code that *actually* deals with calendar time (e.g., Statistics). * DictQuickLookup: Port delay computations to TimeVal * FootNoteWidget: Port delay computations to TimeVal * HTMLBoxWidget: Port delay computations to TimeVal * Notification: Port delay computations to TimeVal * TextBoxWidget: Port delay computations to TimeVal * AutoSuspend: Port to TimeVal * AutoTurn: * Fix it so that settings are actually honored. * Port to TimeVal * BackgroundRunner: Port to TimeVal * Calibre: Port benchmarking code to TimeVal * BookInfoManager: Removed unnecessary yield in the metadata extraction subprocess now that subprocesses get scheduled properly. * All in all, these changes reduced the CPU cost of a single tap by a factor of ten (!), and got rid of an insane amount of weird poll/wakeup cycles that must have been hell on CPU schedulers and batteries..
3 years ago
-- Sometimes the widget's dimensions are not available when creating a GestureRange
-- for some action, so we accept a range function that will only be called at match() time instead.
-- e.g. range = function() return self.dimen end
The great Input/GestureDetector/TimeVal spring cleanup (a.k.a., a saner main loop) (#7415) * ReaderDictionary: Port delay computations to TimeVal * ReaderHighlight: Port delay computations to TimeVal * ReaderView: Port delay computations to TimeVal * Android: Reset gesture detection state on APP_CMD_TERM_WINDOW. This prevents potentially being stuck in bogus gesture states when switching apps. * GestureDetector: * Port delay computations to TimeVal * Fixed delay computations to handle time warps (large and negative deltas). * Simplified timed callback handling to invalidate timers much earlier, preventing accumulating useless timers that no longer have any chance of ever detecting a gesture. * Fixed state clearing to handle the actual effective slots, instead of hard-coding slot 0 & slot 1. * Simplified timed callback handling in general, and added support for a timerfd backend for better performance and accuracy. * The improved timed callback handling allows us to detect and honor (as much as possible) the three possible clock sources usable by Linux evdev events. The only case where synthetic timestamps are used (and that only to handle timed callbacks) is limited to non-timerfd platforms where input events use a clock source that is *NOT* MONOTONIC. AFAICT, that's pretty much... PocketBook, and that's it? * Input: * Use the <linux/input.h> FFI module instead of re-declaring every constant * Fixed (verbose) debug logging of input events to actually translate said constants properly. * Completely reset gesture detection state on suspend. This should prevent bogus gesture detection on resume. * Refactored the waitEvent loop to make it easier to comprehend (hopefully) and much more efficient. Of specific note, it no longer does a crazy select spam every 100µs, instead computing and relying on sane timeouts, as afforded by switching the UI event/input loop to the MONOTONIC time base, and the refactored timed callbacks in GestureDetector. * reMarkable: Stopped enforcing synthetic timestamps on input events, as it should no longer be necessary. * TimeVal: * Refactored and simplified, especially as far as metamethods are concerned (based on <bsd/sys/time.h>). * Added a host of new methods to query the various POSIX clock sources, and made :now default to MONOTONIC. * Removed the debug guard in __sub, as time going backwards can be a perfectly normal occurrence. * New methods: * Clock sources: :realtime, :monotonic, :monotonic_coarse, :realtime_coarse, :boottime * Utility: :tonumber, :tousecs, :tomsecs, :fromnumber, :isPositive, :isZero * UIManager: * Ported event loop & scheduling to TimeVal, and switched to the MONOTONIC time base. This ensures reliable and consistent scheduling, as time is ensured never to go backwards. * Added a :getTime() method, that returns a cached TimeVal:now(), updated at the top of every UI frame. It's used throughout the codebase to cadge a syscall in circumstances where we are guaranteed that a syscall would return a mostly identical value, because very few time has passed. The only code left that does live syscalls does it because it's actually necessary for accuracy, and the only code left that does that in a REALTIME time base is code that *actually* deals with calendar time (e.g., Statistics). * DictQuickLookup: Port delay computations to TimeVal * FootNoteWidget: Port delay computations to TimeVal * HTMLBoxWidget: Port delay computations to TimeVal * Notification: Port delay computations to TimeVal * TextBoxWidget: Port delay computations to TimeVal * AutoSuspend: Port to TimeVal * AutoTurn: * Fix it so that settings are actually honored. * Port to TimeVal * BackgroundRunner: Port to TimeVal * Calibre: Port benchmarking code to TimeVal * BookInfoManager: Removed unnecessary yield in the metadata extraction subprocess now that subprocesses get scheduled properly. * All in all, these changes reduced the CPU cost of a single tap by a factor of ten (!), and got rid of an insane amount of weird poll/wakeup cycles that must have been hell on CPU schedulers and batteries..
3 years ago
-- That's because most widgets' dimensions are only set at paintTo() time:
-- e.g., with InputContainer, the x and y fields of `self.dimen`.
local range
if type(self.range) == "function" then
range = self.range()
else
range = self.range
end
Text input fixes and enhancements (#4084) InputText, ScrollTextWidget, TextBoxWidget: - proper line scrolling when moving cursor or inserting/deleting text to behave like most text editors do - fix cursor navigation, optimize refreshes when moving only the cursor, don't recreate the textwidget when moving cursor up/down - optimize refresh areas, stick to "ui" to avoid a "partial" black flash every 6 appended or deleted chars InputText: - fix issue when toggling Show password multiple times - new option: InputText.cursor_at_end (default: true) - if no InputText.height provided, measure the text widget height that we would start with, and use a ScrollTextWidget with that fixed height, so widget does not overflow container if we extend the text and increase the number of lines - as we are using "ui" refreshes while text editing, allows refreshing the InputText with a diagonal swipe on it (actually, refresh the whole screen, which allows refreshing the keyboard too if needed) ScrollTextWidget: - properly align scrollbar with its TextBoxWidget TextBoxWidget: - some cleanup (added new properties to avoid many method calls), added proxy methods for upper widgets to get them - reordered/renamed/refactored the *CharPos* methods for easier reading (sorry for the diff that won't help reviewing, but that was needed) InputDialog: - new options: allow_newline = false, -- allow entering new lines cursor_at_end = true, -- starts with cursor at end of text, ready to append fullscreen = false, -- adjust to full screen minus keyboard condensed = false, -- true will prevent adding air and balance between elements add_scroll_buttons = false, -- add scroll Up/Down buttons to first row of buttons add_nav_bar = false, -- append a row of page navigation buttons - find the most adequate text height, when none provided or fullscreen, to not overflow screen (and not be stuck with Cancel/Save buttons hidden) - had to disable the use of a MovableContainer (many issues like becoming transparent when a PathChooser comes in front, Hold to paste from clipboard, moving the InputDialog under the keyboard and getting stuck...) GestureRange: fix possible crash (when event processed after widget destruction ?) LoginDialog: fix some ui stack increase and possible crash when switching focus many times.
6 years ago
if not range or not range:contains(gs.pos) then
return false
end
end
if self.rate then
The great Input/GestureDetector/TimeVal spring cleanup (a.k.a., a saner main loop) (#7415) * ReaderDictionary: Port delay computations to TimeVal * ReaderHighlight: Port delay computations to TimeVal * ReaderView: Port delay computations to TimeVal * Android: Reset gesture detection state on APP_CMD_TERM_WINDOW. This prevents potentially being stuck in bogus gesture states when switching apps. * GestureDetector: * Port delay computations to TimeVal * Fixed delay computations to handle time warps (large and negative deltas). * Simplified timed callback handling to invalidate timers much earlier, preventing accumulating useless timers that no longer have any chance of ever detecting a gesture. * Fixed state clearing to handle the actual effective slots, instead of hard-coding slot 0 & slot 1. * Simplified timed callback handling in general, and added support for a timerfd backend for better performance and accuracy. * The improved timed callback handling allows us to detect and honor (as much as possible) the three possible clock sources usable by Linux evdev events. The only case where synthetic timestamps are used (and that only to handle timed callbacks) is limited to non-timerfd platforms where input events use a clock source that is *NOT* MONOTONIC. AFAICT, that's pretty much... PocketBook, and that's it? * Input: * Use the <linux/input.h> FFI module instead of re-declaring every constant * Fixed (verbose) debug logging of input events to actually translate said constants properly. * Completely reset gesture detection state on suspend. This should prevent bogus gesture detection on resume. * Refactored the waitEvent loop to make it easier to comprehend (hopefully) and much more efficient. Of specific note, it no longer does a crazy select spam every 100µs, instead computing and relying on sane timeouts, as afforded by switching the UI event/input loop to the MONOTONIC time base, and the refactored timed callbacks in GestureDetector. * reMarkable: Stopped enforcing synthetic timestamps on input events, as it should no longer be necessary. * TimeVal: * Refactored and simplified, especially as far as metamethods are concerned (based on <bsd/sys/time.h>). * Added a host of new methods to query the various POSIX clock sources, and made :now default to MONOTONIC. * Removed the debug guard in __sub, as time going backwards can be a perfectly normal occurrence. * New methods: * Clock sources: :realtime, :monotonic, :monotonic_coarse, :realtime_coarse, :boottime * Utility: :tonumber, :tousecs, :tomsecs, :fromnumber, :isPositive, :isZero * UIManager: * Ported event loop & scheduling to TimeVal, and switched to the MONOTONIC time base. This ensures reliable and consistent scheduling, as time is ensured never to go backwards. * Added a :getTime() method, that returns a cached TimeVal:now(), updated at the top of every UI frame. It's used throughout the codebase to cadge a syscall in circumstances where we are guaranteed that a syscall would return a mostly identical value, because very few time has passed. The only code left that does live syscalls does it because it's actually necessary for accuracy, and the only code left that does that in a REALTIME time base is code that *actually* deals with calendar time (e.g., Statistics). * DictQuickLookup: Port delay computations to TimeVal * FootNoteWidget: Port delay computations to TimeVal * HTMLBoxWidget: Port delay computations to TimeVal * Notification: Port delay computations to TimeVal * TextBoxWidget: Port delay computations to TimeVal * AutoSuspend: Port to TimeVal * AutoTurn: * Fix it so that settings are actually honored. * Port to TimeVal * BackgroundRunner: Port to TimeVal * Calibre: Port benchmarking code to TimeVal * BookInfoManager: Removed unnecessary yield in the metadata extraction subprocess now that subprocesses get scheduled properly. * All in all, these changes reduced the CPU cost of a single tap by a factor of ten (!), and got rid of an insane amount of weird poll/wakeup cycles that must have been hell on CPU schedulers and batteries..
3 years ago
-- This field sets up rate-limiting (in matches per second).
-- It's mostly useful for e-Ink devices with less powerful CPUs
-- and screens that cannot handle the amount of gesture events that would otherwise be generated.
local last_time = self.last_time or TimeVal.zero
if gs.time - last_time > TimeVal:new{ usec = 1000000 / self.rate } then
self.last_time = gs.time
else
return false
end
end
if self.scale then
local scale = gs.distance or gs.span
if self.scale[1] > scale or self.scale[2] < scale then
return false
end
end
if self.direction then
if self.direction ~= gs.direction then
return false
end
end
return true
end
return GestureRange