Add code for tutorial 10

pull/37/head
Andre Richter 5 years ago
parent 434ac5851d
commit d5cd571ce5
No known key found for this signature in database
GPG Key ID: 2116C1AB102F615E

@ -0,0 +1,10 @@
{
"editor.formatOnSave": true,
"rust.features": [
"bsp_rpi3"
],
"rust.all_targets": false,
"editor.rulers": [
100
],
}

@ -0,0 +1,42 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
[[package]]
name = "cortex-a"
version = "2.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"register 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "kernel"
version = "0.1.0"
dependencies = [
"cortex-a 2.7.0 (registry+https://github.com/rust-lang/crates.io-index)",
"r0 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
"register 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "r0"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "register"
version = "0.3.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"tock-registers 0.3.0 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "tock-registers"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
[metadata]
"checksum cortex-a 2.7.0 (registry+https://github.com/rust-lang/crates.io-index)" = "cbb16c411ab74044f174746a6cbae67bcdebea126e376b5441e5986e6a6aa950"
"checksum r0 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)" = "e2a38df5b15c8d5c7e8654189744d8e396bddc18ad48041a500ce52d6948941f"
"checksum register 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)" = "469bb5ddde81d67fb8bba4e14d77689b8166cfd077abe7530591cefe29d05823"
"checksum tock-registers 0.3.0 (registry+https://github.com/rust-lang/crates.io-index)" = "c758f5195a2e0df9d9fecf6f506506b2766ff74cf64db1e995c87e2761a5c3e2"

@ -0,0 +1,21 @@
[package]
name = "kernel"
version = "0.1.0"
authors = ["Andre Richter <andre.o.richter@gmail.com>"]
edition = "2018"
[package.metadata.cargo-xbuild]
sysroot_path = "../xbuild_sysroot"
# The features section is used to select the target board.
[features]
default = []
bsp_rpi3 = ["cortex-a", "register"]
bsp_rpi4 = ["cortex-a", "register"]
[dependencies]
r0 = "0.2.*"
# Optional dependencies
cortex-a = { version = "2.*", optional = true }
register = { version = "0.3.*", optional = true }

@ -0,0 +1,127 @@
## SPDX-License-Identifier: MIT
##
## Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
# Default to the RPi3
ifndef BSP
BSP = rpi3
endif
# BSP-specific arguments
ifeq ($(BSP),rpi3)
TARGET = aarch64-unknown-none-softfloat
OUTPUT = kernel8.img
QEMU_BINARY = qemu-system-aarch64
QEMU_MACHINE_TYPE = raspi3
QEMU_MISC_ARGS = -serial stdio
OPENOCD_ARG = -f /openocd/tcl/interface/ftdi/olimex-arm-usb-tiny-h.cfg -f /openocd/rpi3.cfg
JTAG_BOOT_IMAGE = jtag_boot_rpi3.img
LINKER_FILE = src/bsp/rpi/link.ld
RUSTC_MISC_ARGS = -C target-cpu=cortex-a53
else ifeq ($(BSP),rpi4)
TARGET = aarch64-unknown-none-softfloat
OUTPUT = kernel8.img
# QEMU_BINARY = qemu-system-aarch64
# QEMU_MACHINE_TYPE =
# QEMU_MISC_ARGS = -serial stdio
OPENOCD_ARG = -f /openocd/tcl/interface/ftdi/olimex-arm-usb-tiny-h.cfg -f /openocd/rpi4.cfg
JTAG_BOOT_IMAGE = jtag_boot_rpi4.img
LINKER_FILE = src/bsp/rpi/link.ld
RUSTC_MISC_ARGS = -C target-cpu=cortex-a72
endif
SOURCES = $(wildcard **/*.rs) $(wildcard **/*.S) $(wildcard **/*.ld)
XRUSTC_CMD = cargo xrustc \
--target=$(TARGET) \
--features bsp_$(BSP) \
--release \
-- \
-C link-arg=-T$(LINKER_FILE) \
$(RUSTC_MISC_ARGS)
CARGO_OUTPUT = target/$(TARGET)/release/kernel
OBJCOPY_CMD = cargo objcopy \
-- \
--strip-all \
-O binary
CONTAINER_UTILS = rustembedded/osdev-utils
DOCKER_CMD = docker run -it --rm
DOCKER_ARG_CURDIR = -v $(shell pwd):/work -w /work
DOCKER_ARG_TTY = --privileged -v /dev:/dev
DOCKER_ARG_JTAG = -v $(shell pwd)/../X1_JTAG_boot:/jtag
DOCKER_ARG_NET = --network host
DOCKER_EXEC_QEMU = $(QEMU_BINARY) -M $(QEMU_MACHINE_TYPE) -kernel $(OUTPUT)
DOCKER_EXEC_RASPBOOT = raspbootcom
DOCKER_EXEC_RASPBOOT_DEV = /dev/ttyUSB0
# DOCKER_EXEC_RASPBOOT_DEV = /dev/ttyACM0
.PHONY: all doc qemu chainboot clippy clean readelf objdump nm
all: clean $(OUTPUT)
$(CARGO_OUTPUT): $(SOURCES)
RUSTFLAGS="-D warnings -D missing_docs" $(XRUSTC_CMD)
$(OUTPUT): $(CARGO_OUTPUT)
cp $< .
$(OBJCOPY_CMD) $< $(OUTPUT)
doc:
cargo xdoc --target=$(TARGET) --features bsp_$(BSP) --document-private-items
xdg-open target/$(TARGET)/doc/kernel/index.html
ifeq ($(QEMU_MACHINE_TYPE),)
qemu:
@echo "This board is not yet supported for QEMU."
else
qemu: all
$(DOCKER_CMD) $(DOCKER_ARG_CURDIR) $(CONTAINER_UTILS) \
$(DOCKER_EXEC_QEMU) $(QEMU_MISC_ARGS)
endif
chainboot: all
$(DOCKER_CMD) $(DOCKER_ARG_CURDIR) $(DOCKER_ARG_TTY) \
$(CONTAINER_UTILS) $(DOCKER_EXEC_RASPBOOT) $(DOCKER_EXEC_RASPBOOT_DEV) \
$(OUTPUT)
jtagboot:
$(DOCKER_CMD) $(DOCKER_ARG_TTY) $(DOCKER_ARG_JTAG) $(CONTAINER_UTILS) \
$(DOCKER_EXEC_RASPBOOT) $(DOCKER_EXEC_RASPBOOT_DEV) \
/jtag/$(JTAG_BOOT_IMAGE)
openocd:
$(DOCKER_CMD) $(DOCKER_ARG_TTY) $(DOCKER_ARG_NET) $(CONTAINER_UTILS) \
openocd $(OPENOCD_ARG)
define gen_gdb
RUSTFLAGS="-D warnings -D missing_docs" $(XRUSTC_CMD) $1
cp $(CARGO_OUTPUT) kernel_for_jtag
$(DOCKER_CMD) $(DOCKER_ARG_CURDIR) $(DOCKER_ARG_NET) $(CONTAINER_UTILS) \
gdb-multiarch -q kernel_for_jtag
endef
gdb: clean $(SOURCES)
$(call gen_gdb,-C debuginfo=2)
gdb-opt0: clean $(SOURCES)
$(call gen_gdb,-C debuginfo=2 -C opt-level=0)
clippy:
cargo xclippy --target=$(TARGET) --features bsp_$(BSP)
clean:
cargo clean
readelf:
readelf -a kernel
objdump:
cargo objdump --target $(TARGET) -- -disassemble -print-imm-hex kernel
nm:
cargo nm --target $(TARGET) -- kernel | sort

@ -0,0 +1,406 @@
# Tutorial 10 - Privilege Level
## tl;dr
In early boot code, we transition from the `Hypervisor` privilege level (`EL2` in AArch64) to the
`Kernel` (`EL1`) privilege level.
## Introduction
Application-grade CPUs have so-called `privilege levels`, which have different purposes:
| Typically used for | AArch64 | RISC-V | x86 |
| ------------- | ------------- | ------------- | ------------- |
| Userspace applications | EL0 | U/VU | Ring 3 |
| OS Kernel | EL1 | S/VS | Ring 0 |
| Hypervisor | EL2 | HS | Ring -1 |
| Low-Level Firmware | EL3 | M | |
`EL` in AArch64 stands for `Exception Level`. If you want more information regarding the other
architectures, please have a look at the following links:
- [x86 privilege rings](https://en.wikipedia.org/wiki/Protection_ring).
- [RISC-V privilege modes](https://content.riscv.org/wp-content/uploads/2017/12/Tue0942-riscv-hypervisor-waterman.pdf).
At this point, I strongly recommend that you glimpse over `Chapter 3` of the [Programmers Guide for
ARMv8-A](http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf)
before you continue. It gives a concise overview about the topic.
## Scope of this tutorial
If you set up your SD Card exactly like mentioned in [tutorial 06], the Rpi will always start
executing in `EL2`. Since we are writing a traditional `Kernel`, we have to transition into the more
appropriate `EL1`.
[tutorial 06]: https://github.com/rust-embedded/rust-raspi3-OS-tutorials/tree/master/06_drivers_gpio_uart#boot-it-from-sd-card
## Checking for EL2 in the entrypoint
First of all, we need to ensure that we actually execute in `EL2` before we can call respective code
to transition to `EL1`:
```rust
pub unsafe extern "C" fn _start() -> ! {
const CORE_MASK: u64 = 0x3;
// Expect the boot core to start in EL2.
if (bsp::BOOT_CORE_ID == MPIDR_EL1.get() & CORE_MASK)
&& (CurrentEL.get() == CurrentEL::EL::EL2.value)
{
el2_to_el1_transition()
} else {
// If not core0, infinitely wait for events.
wait_forever()
}
}
```
If this is the case, we continue with preparing the `EL2` -> `EL1` transition in
`el2_to_el1_transition()`.
## Transition preparation
Since `EL2` is more privileged than `EL1`, it has control over various processor features and can
allow or disallow `EL1` code to use them. One such example is access to timer and counter registers.
We are already using them since [tutorial 08](../08_timestamps/), so of course we want to keep them.
Therefore we set the respective flags in the [Counter-timer Hypervisor Control register] and
additionally set the virtual offset to zero so that we get the real physical value everytime:
[Counter-timer Hypervisor Control register]: https://docs.rs/cortex-a/2.4.0/src/cortex_a/regs/cnthctl_el2.rs.html
```rust
// Enable timer counter registers for EL1.
CNTHCTL_EL2.write(CNTHCTL_EL2::EL1PCEN::SET + CNTHCTL_EL2::EL1PCTEN::SET);
// No offset for reading the counters.
CNTVOFF_EL2.set(0);
```
Next, we configure the [Hypervisor Configuration Register] such that `EL1` should actually run in
`AArch64` mode, and not in `AArch32`, which would also be possible.
[Hypervisor Configuration Register]: https://docs.rs/cortex-a/2.4.0/src/cortex_a/regs/hcr_el2.rs.html
```rust
// Set EL1 execution state to AArch64.
HCR_EL2.write(HCR_EL2::RW::EL1IsAarch64);
```
## Returning from an exception that never happened
There is actually only one way to transition from a higher EL to a lower EL, which is by way of
executing the [ERET] instruction.
[ERET]: https://docs.rs/cortex-a/2.4.0/src/cortex_a/asm.rs.html#49-62
This instruction will copy the contents of the [Saved Program Status Register - EL2] to `Current
Program Status Register - EL1` and jump to the instruction address that is stored in the [Exception
Link Register - EL2].
This is basically the reverse of what is happening when an exception is taken. You'll learn about it
in an upcoming tutorial.
[Saved Program Status Register - EL2]: https://docs.rs/cortex-a/2.4.0/src/cortex_a/regs/spsr_el2.rs.html
[Exception Link Register - EL2]: https://docs.rs/cortex-a/2.4.0/src/cortex_a/regs/elr_el2.rs.html
```rust
// Set up a simulated exception return.
//
// First, fake a saved program status, where all interrupts were masked and SP_EL1 was used as a
// stack pointer.
SPSR_EL2.write(
SPSR_EL2::D::Masked
+ SPSR_EL2::A::Masked
+ SPSR_EL2::I::Masked
+ SPSR_EL2::F::Masked
+ SPSR_EL2::M::EL1h,
);
// Second, let the link register point to init().
ELR_EL2.set(crate::runtime_init::init as *const () as u64);
```
As you can see, we are populating `ELR_EL2` with the address of the [init()] function that we
earlier used to call directly from the entrypoint.
Finally, we set the stack pointer for `SP_EL1` and call `ERET`:
[init()]: src/runtime_init.rs
```rust
// Set up SP_EL1 (stack pointer), which will be used by EL1 once we "return" to it.
SP_EL1.set(bsp::BOOT_CORE_STACK_START);
// Use `eret` to "return" to EL1. This will result in execution of `reset()` in EL1.
asm::eret()
```
## Are we stackless?
We just wrote a big inline rust function, `el2_to_el1_transition()`, that is executed in a context
where we do not have a stack yet. We should double-check the generated machine code:
```console
make objdump
[...]
Disassembly of section .text:
0000000000080000 _start:
80000: a8 00 38 d5 mrs x8, MPIDR_EL1
80004: 1f 05 40 f2 tst x8, #0x3
80008: 81 00 00 54 b.ne #0x10 <_start+0x18>
8000c: 48 42 38 d5 mrs x8, CurrentEL
80010: 1f 21 00 71 cmp w8, #0x8
80014: 60 00 00 54 b.eq #0xc <_start+0x20>
80018: 5f 20 03 d5 wfe
8001c: ff ff ff 17 b #-0x4 <_start+0x18>
80020: e8 03 1f aa mov x8, xzr
80024: 69 00 80 52 mov w9, #0x3
80028: 09 e1 1c d5 msr CNTHCTL_EL2, x9
8002c: 68 e0 1c d5 msr CNTVOFF_EL2, x8
80030: 08 00 00 90 adrp x8, #0x0
80034: 0a 00 b0 52 mov w10, #-0x80000000
80038: ab 78 80 52 mov w11, #0x3c5
8003c: 0c 01 a0 52 mov w12, #0x80000
80040: 0a 11 1c d5 msr HCR_EL2, x10
80044: 0b 40 1c d5 msr SPSR_EL2, x11
80048: 08 91 2f 91 add x8, x8, #0xbe4
8004c: 28 40 1c d5 msr ELR_EL2, x8
80050: 0c 41 1c d5 msr SP_EL1, x12
80054: e0 03 9f d6 eret
```
Looks good! Thanks zero-overhead abstractions in the
[cortex-a](https://github.com/rust-embedded/cortex-a) crate! :heart_eyes:
## Testing
In `main.rs`, we additionally inspect if the mask bits in `SPSR_EL2` made it to `EL1` as well:
```console
make chainbot
[...]
### Listening on /dev/ttyUSB0
__ __ _ _ _ _
| \/ (_)_ _ (_) | ___ __ _ __| |
| |\/| | | ' \| | |__/ _ \/ _` / _` |
|_| |_|_|_||_|_|____\___/\__,_\__,_|
Raspberry Pi 3
[ML] Requesting binary
### sending kernel kernel8.img [16480 byte]
### finished sending
[ML] Loaded! Executing the payload now
[ 1.459973] Booting on: Raspberry Pi 3
[ 1.462256] Current privilege level: EL1
[ 1.466163] Exception handling state:
[ 1.469810] Debug: Masked
[ 1.473023] SError: Masked
[ 1.476235] IRQ: Masked
[ 1.479447] FIQ: Masked
[ 1.482661] Architectural timer resolution: 52 ns
[ 1.487349] Drivers loaded:
[ 1.490127] 1. GPIO
[ 1.492731] 2. PL011Uart
[ 1.495770] Timer test, spinning for 1 second
[ 2.500114] Echoing input now
```
## Diff to previous
```diff
diff -uNr 09_hw_debug_JTAG/src/arch/aarch64/exception.rs 10_privilege_level/src/arch/aarch64/exception.rs
--- 09_hw_debug_JTAG/src/arch/aarch64/exception.rs
+++ 10_privilege_level/src/arch/aarch64/exception.rs
@@ -0,0 +1,44 @@
+// SPDX-License-Identifier: MIT
+//
+// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
+
+//! Exception handling.
+
+use cortex_a::regs::*;
+
+pub trait DaifField {
+ fn daif_field() -> register::Field<u32, DAIF::Register>;
+}
+
+pub struct Debug;
+pub struct SError;
+pub struct IRQ;
+pub struct FIQ;
+
+impl DaifField for Debug {
+ fn daif_field() -> register::Field<u32, DAIF::Register> {
+ DAIF::D
+ }
+}
+
+impl DaifField for SError {
+ fn daif_field() -> register::Field<u32, DAIF::Register> {
+ DAIF::A
+ }
+}
+
+impl DaifField for IRQ {
+ fn daif_field() -> register::Field<u32, DAIF::Register> {
+ DAIF::I
+ }
+}
+
+impl DaifField for FIQ {
+ fn daif_field() -> register::Field<u32, DAIF::Register> {
+ DAIF::F
+ }
+}
+
+pub fn is_masked<T: DaifField>() -> bool {
+ DAIF.is_set(T::daif_field())
+}
diff -uNr 09_hw_debug_JTAG/src/arch/aarch64.rs 10_privilege_level/src/arch/aarch64.rs
--- 09_hw_debug_JTAG/src/arch/aarch64.rs
+++ 10_privilege_level/src/arch/aarch64.rs
@@ -4,6 +4,7 @@
//! AArch64.
+mod exception;
pub mod sync;
mod time;
@@ -21,15 +22,51 @@
pub unsafe extern "C" fn _start() -> ! {
const CORE_MASK: u64 = 0x3;
- if bsp::BOOT_CORE_ID == MPIDR_EL1.get() & CORE_MASK {
- SP.set(bsp::BOOT_CORE_STACK_START);
- crate::runtime_init::init()
+ // Expect the boot core to start in EL2.
+ if (bsp::BOOT_CORE_ID == MPIDR_EL1.get() & CORE_MASK)
+ && (CurrentEL.get() == CurrentEL::EL::EL2.value)
+ {
+ el2_to_el1_transition()
} else {
// If not core0, infinitely wait for events.
wait_forever()
}
}
+/// Transition from EL2 to EL1.
+#[inline(always)]
+fn el2_to_el1_transition() -> ! {
+ // Enable timer counter registers for EL1.
+ CNTHCTL_EL2.write(CNTHCTL_EL2::EL1PCEN::SET + CNTHCTL_EL2::EL1PCTEN::SET);
+
+ // No offset for reading the counters.
+ CNTVOFF_EL2.set(0);
+
+ // Set EL1 execution state to AArch64.
+ HCR_EL2.write(HCR_EL2::RW::EL1IsAarch64);
+
+ // Set up a simulated exception return.
+ //
+ // First, fake a saved program status, where all interrupts were masked and SP_EL1 was used as a
+ // stack pointer.
+ SPSR_EL2.write(
+ SPSR_EL2::D::Masked
+ + SPSR_EL2::A::Masked
+ + SPSR_EL2::I::Masked
+ + SPSR_EL2::F::Masked
+ + SPSR_EL2::M::EL1h,
+ );
+
+ // Second, let the link register point to init().
+ ELR_EL2.set(crate::runtime_init::init as *const () as u64);
+
+ // Set up SP_EL1 (stack pointer), which will be used by EL1 once we "return" to it.
+ SP_EL1.set(bsp::BOOT_CORE_STACK_START);
+
+ // Use `eret` to "return" to EL1. This will result in execution of `reset()` in EL1.
+ asm::eret()
+}
+
//--------------------------------------------------------------------------------------------------
// Global instances
//--------------------------------------------------------------------------------------------------
@@ -61,3 +98,36 @@
asm::wfe()
}
}
+
+/// Information about the HW state.
+pub mod state {
+ use cortex_a::regs::*;
+
+ /// The current privilege level.
+ pub fn current_privilege_level() -> &'static str {
+ let el = CurrentEL.read_as_enum(CurrentEL::EL);
+ match el {
+ Some(CurrentEL::EL::Value::EL2) => "EL2",
+ Some(CurrentEL::EL::Value::EL1) => "EL1",
+ _ => "Unknown",
+ }
+ }
+
+ #[rustfmt::skip]
+ pub fn print_exception_state() {
+ use super::{
+ exception,
+ exception::{Debug, SError, FIQ, IRQ},
+ };
+ use crate::println;
+
+ let to_mask_str = |x: bool| -> &'static str {
+ if x { "Masked" } else { "Unmasked" }
+ };
+
+ println!(" Debug: {}", to_mask_str(exception::is_masked::<Debug>()));
+ println!(" SError: {}", to_mask_str(exception::is_masked::<SError>()));
+ println!(" IRQ: {}", to_mask_str(exception::is_masked::<IRQ>()));
+ println!(" FIQ: {}", to_mask_str(exception::is_masked::<FIQ>()));
+ }
+}
diff -uNr 09_hw_debug_JTAG/src/main.rs 10_privilege_level/src/main.rs
--- 09_hw_debug_JTAG/src/main.rs
+++ 10_privilege_level/src/main.rs
@@ -65,9 +65,17 @@
/// The main function running after the early init.
fn kernel_main() -> ! {
use core::time::Duration;
- use interface::time::Timer;
+ use interface::{console::All, time::Timer};
println!("Booting on: {}", bsp::board_name());
+
+ println!(
+ "Current privilege level: {}",
+ arch::state::current_privilege_level()
+ );
+ println!("Exception handling state:");
+ arch::state::print_exception_state();
+
println!(
"Architectural timer resolution: {} ns",
arch::timer().resolution().as_nanos()
@@ -78,11 +86,12 @@
println!(" {}. {}", i + 1, driver.compatible());
}
- // Test a failing timer case.
- arch::timer().spin_for(Duration::from_nanos(1));
+ println!("Timer test, spinning for 1 second");
+ arch::timer().spin_for(Duration::from_secs(1));
+ println!("Echoing input now");
loop {
- println!("Spinning for 1 second");
- arch::timer().spin_for(Duration::from_secs(1));
+ let c = bsp::console().read_char();
+ bsp::console().write_char(c);
}
}
```

Binary file not shown.

Binary file not shown.

@ -0,0 +1,11 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Conditional exporting of processor architecture code.
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
mod aarch64;
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
pub use aarch64::*;

@ -0,0 +1,133 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! AArch64.
mod exception;
pub mod sync;
mod time;
use crate::{bsp, interface};
use cortex_a::{asm, regs::*};
/// The entry of the `kernel` binary.
///
/// The function must be named `_start`, because the linker is looking for this exact name.
///
/// # Safety
///
/// - Linker script must ensure to place this function at `0x80_000`.
#[no_mangle]
pub unsafe extern "C" fn _start() -> ! {
const CORE_MASK: u64 = 0x3;
// Expect the boot core to start in EL2.
if (bsp::BOOT_CORE_ID == MPIDR_EL1.get() & CORE_MASK)
&& (CurrentEL.get() == CurrentEL::EL::EL2.value)
{
el2_to_el1_transition()
} else {
// If not core0, infinitely wait for events.
wait_forever()
}
}
/// Transition from EL2 to EL1.
#[inline(always)]
fn el2_to_el1_transition() -> ! {
// Enable timer counter registers for EL1.
CNTHCTL_EL2.write(CNTHCTL_EL2::EL1PCEN::SET + CNTHCTL_EL2::EL1PCTEN::SET);
// No offset for reading the counters.
CNTVOFF_EL2.set(0);
// Set EL1 execution state to AArch64.
HCR_EL2.write(HCR_EL2::RW::EL1IsAarch64);
// Set up a simulated exception return.
//
// First, fake a saved program status, where all interrupts were masked and SP_EL1 was used as a
// stack pointer.
SPSR_EL2.write(
SPSR_EL2::D::Masked
+ SPSR_EL2::A::Masked
+ SPSR_EL2::I::Masked
+ SPSR_EL2::F::Masked
+ SPSR_EL2::M::EL1h,
);
// Second, let the link register point to init().
ELR_EL2.set(crate::runtime_init::init as *const () as u64);
// Set up SP_EL1 (stack pointer), which will be used by EL1 once we "return" to it.
SP_EL1.set(bsp::BOOT_CORE_STACK_START);
// Use `eret` to "return" to EL1. This will result in execution of `reset()` in EL1.
asm::eret()
}
//--------------------------------------------------------------------------------------------------
// Global instances
//--------------------------------------------------------------------------------------------------
static TIMER: time::Timer = time::Timer;
//--------------------------------------------------------------------------------------------------
// Implementation of the kernel's architecture abstraction code
//--------------------------------------------------------------------------------------------------
pub use asm::nop;
/// Spin for `n` cycles.
pub fn spin_for_cycles(n: usize) {
for _ in 0..n {
asm::nop();
}
}
/// Return a reference to a `interface::time::TimeKeeper` implementation.
pub fn timer() -> &'static impl interface::time::Timer {
&TIMER
}
/// Pause execution on the calling CPU core.
#[inline(always)]
pub fn wait_forever() -> ! {
loop {
asm::wfe()
}
}
/// Information about the HW state.
pub mod state {
use cortex_a::regs::*;
/// The current privilege level.
pub fn current_privilege_level() -> &'static str {
let el = CurrentEL.read_as_enum(CurrentEL::EL);
match el {
Some(CurrentEL::EL::Value::EL2) => "EL2",
Some(CurrentEL::EL::Value::EL1) => "EL1",
_ => "Unknown",
}
}
#[rustfmt::skip]
pub fn print_exception_state() {
use super::{
exception,
exception::{Debug, SError, FIQ, IRQ},
};
use crate::println;
let to_mask_str = |x: bool| -> &'static str {
if x { "Masked" } else { "Unmasked" }
};
println!(" Debug: {}", to_mask_str(exception::is_masked::<Debug>()));
println!(" SError: {}", to_mask_str(exception::is_masked::<SError>()));
println!(" IRQ: {}", to_mask_str(exception::is_masked::<IRQ>()));
println!(" FIQ: {}", to_mask_str(exception::is_masked::<FIQ>()));
}
}

@ -0,0 +1,44 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Exception handling.
use cortex_a::regs::*;
pub trait DaifField {
fn daif_field() -> register::Field<u32, DAIF::Register>;
}
pub struct Debug;
pub struct SError;
pub struct IRQ;
pub struct FIQ;
impl DaifField for Debug {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::D
}
}
impl DaifField for SError {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::A
}
}
impl DaifField for IRQ {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::I
}
}
impl DaifField for FIQ {
fn daif_field() -> register::Field<u32, DAIF::Register> {
DAIF::F
}
}
pub fn is_masked<T: DaifField>() -> bool {
DAIF.is_set(T::daif_field())
}

@ -0,0 +1,44 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Synchronization primitives.
use crate::interface;
use core::cell::UnsafeCell;
/// A pseudo-lock for teaching purposes.
///
/// Used to introduce [interior mutability].
///
/// In contrast to a real Mutex implementation, does not protect against concurrent access to the
/// contained data. This part is preserved for later lessons.
///
/// The lock will only be used as long as it is safe to do so, i.e. as long as the kernel is
/// executing single-threaded, aka only running on a single core with interrupts disabled.
///
/// [interior mutability]: https://doc.rust-lang.org/std/cell/index.html
pub struct NullLock<T: ?Sized> {
data: UnsafeCell<T>,
}
unsafe impl<T: ?Sized + Send> Send for NullLock<T> {}
unsafe impl<T: ?Sized + Send> Sync for NullLock<T> {}
impl<T> NullLock<T> {
pub const fn new(data: T) -> NullLock<T> {
NullLock {
data: UnsafeCell::new(data),
}
}
}
impl<T> interface::sync::Mutex for &NullLock<T> {
type Data = T;
fn lock<R>(&mut self, f: impl FnOnce(&mut Self::Data) -> R) -> R {
// In a real lock, there would be code encapsulating this line that ensures that this
// mutable reference will ever only be given out once at a time.
f(unsafe { &mut *self.data.get() })
}
}

@ -0,0 +1,77 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Timer primitives.
use crate::{interface, warn};
use core::time::Duration;
use cortex_a::regs::*;
const NS_PER_S: u64 = 1_000_000_000;
pub struct Timer;
impl interface::time::Timer for Timer {
fn resolution(&self) -> Duration {
Duration::from_nanos(NS_PER_S / (CNTFRQ_EL0.get() as u64))
}
fn uptime(&self) -> Duration {
let frq: u64 = CNTFRQ_EL0.get() as u64;
let current_count: u64 = CNTPCT_EL0.get() * NS_PER_S;
Duration::from_nanos(current_count / frq)
}
fn spin_for(&self, duration: Duration) {
// Instantly return on zero.
if duration.as_nanos() == 0 {
return;
}
// Calculate the register compare value.
let frq = CNTFRQ_EL0.get() as u64;
let x = match frq.checked_mul(duration.as_nanos() as u64) {
None => {
warn!("Spin duration too long, skipping");
return;
}
Some(val) => val,
};
let tval = x / NS_PER_S;
// Check if it is within supported bounds.
let warn: Option<&str> = if tval == 0 {
Some("smaller")
} else if tval > u32::max_value().into() {
Some("bigger")
} else {
None
};
if let Some(w) = warn {
warn!(
"Spin duration {} than architecturally supported, skipping",
w
);
return;
}
// Set the compare value register.
CNTP_TVAL_EL0.set(tval as u32);
// Kick off the counting. // Disable timer interrupt.
CNTP_CTL_EL0.modify(CNTP_CTL_EL0::ENABLE::SET + CNTP_CTL_EL0::IMASK::SET);
loop {
// ISTATUS will be '1' when cval ticks have passed. Busy-check it.
if CNTP_CTL_EL0.is_set(CNTP_CTL_EL0::ISTATUS) {
break;
}
}
// Disable counting again.
CNTP_CTL_EL0.modify(CNTP_CTL_EL0::ENABLE::CLEAR);
}
}

@ -0,0 +1,13 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Conditional exporting of Board Support Packages.
mod driver;
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
mod rpi;
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
pub use rpi::*;

@ -0,0 +1,11 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Drivers.
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
mod bcm;
#[cfg(any(feature = "bsp_rpi3", feature = "bsp_rpi4"))]
pub use bcm::*;

@ -0,0 +1,11 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! BCM driver top level.
mod bcm2xxx_gpio;
mod bcm2xxx_pl011_uart;
pub use bcm2xxx_gpio::GPIO;
pub use bcm2xxx_pl011_uart::PL011Uart;

@ -0,0 +1,157 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! GPIO driver.
use crate::{arch, arch::sync::NullLock, interface};
use core::ops;
use register::{mmio::ReadWrite, register_bitfields};
// GPIO registers.
//
// Descriptions taken from
// https://github.com/raspberrypi/documentation/files/1888662/BCM2837-ARM-Peripherals.-.Revised.-.V2-1.pdf
register_bitfields! {
u32,
/// GPIO Function Select 1
GPFSEL1 [
/// Pin 15
FSEL15 OFFSET(15) NUMBITS(3) [
Input = 0b000,
Output = 0b001,
AltFunc0 = 0b100 // PL011 UART RX
],
/// Pin 14
FSEL14 OFFSET(12) NUMBITS(3) [
Input = 0b000,
Output = 0b001,
AltFunc0 = 0b100 // PL011 UART TX
]
],
/// GPIO Pull-up/down Clock Register 0
GPPUDCLK0 [
/// Pin 15
PUDCLK15 OFFSET(15) NUMBITS(1) [
NoEffect = 0,
AssertClock = 1
],
/// Pin 14
PUDCLK14 OFFSET(14) NUMBITS(1) [
NoEffect = 0,
AssertClock = 1
]
]
}
#[allow(non_snake_case)]
#[repr(C)]
pub struct RegisterBlock {
pub GPFSEL0: ReadWrite<u32>, // 0x00
pub GPFSEL1: ReadWrite<u32, GPFSEL1::Register>, // 0x04
pub GPFSEL2: ReadWrite<u32>, // 0x08
pub GPFSEL3: ReadWrite<u32>, // 0x0C
pub GPFSEL4: ReadWrite<u32>, // 0x10
pub GPFSEL5: ReadWrite<u32>, // 0x14
__reserved_0: u32, // 0x18
GPSET0: ReadWrite<u32>, // 0x1C
GPSET1: ReadWrite<u32>, // 0x20
__reserved_1: u32, //
GPCLR0: ReadWrite<u32>, // 0x28
__reserved_2: [u32; 2], //
GPLEV0: ReadWrite<u32>, // 0x34
GPLEV1: ReadWrite<u32>, // 0x38
__reserved_3: u32, //
GPEDS0: ReadWrite<u32>, // 0x40
GPEDS1: ReadWrite<u32>, // 0x44
__reserved_4: [u32; 7], //
GPHEN0: ReadWrite<u32>, // 0x64
GPHEN1: ReadWrite<u32>, // 0x68
__reserved_5: [u32; 10], //
pub GPPUD: ReadWrite<u32>, // 0x94
pub GPPUDCLK0: ReadWrite<u32, GPPUDCLK0::Register>, // 0x98
pub GPPUDCLK1: ReadWrite<u32>, // 0x9C
}
/// The driver's private data.
struct GPIOInner {
base_addr: usize,
}
/// Deref to RegisterBlock.
impl ops::Deref for GPIOInner {
type Target = RegisterBlock;
fn deref(&self) -> &Self::Target {
unsafe { &*self.ptr() }
}
}
impl GPIOInner {
const fn new(base_addr: usize) -> GPIOInner {
GPIOInner { base_addr }
}
/// Return a pointer to the register block.
fn ptr(&self) -> *const RegisterBlock {
self.base_addr as *const _
}
}
//--------------------------------------------------------------------------------------------------
// BSP-public
//--------------------------------------------------------------------------------------------------
use interface::sync::Mutex;
/// The driver's main struct.
pub struct GPIO {
inner: NullLock<GPIOInner>,
}
impl GPIO {
pub const unsafe fn new(base_addr: usize) -> GPIO {
GPIO {
inner: NullLock::new(GPIOInner::new(base_addr)),
}
}
/// Map PL011 UART as standard output.
///
/// TX to pin 14
/// RX to pin 15
pub fn map_pl011_uart(&self) {
let mut r = &self.inner;
r.lock(|inner| {
// Map to pins.
inner
.GPFSEL1
.modify(GPFSEL1::FSEL14::AltFunc0 + GPFSEL1::FSEL15::AltFunc0);
// Enable pins 14 and 15.
inner.GPPUD.set(0);
arch::spin_for_cycles(150);
inner
.GPPUDCLK0
.write(GPPUDCLK0::PUDCLK14::AssertClock + GPPUDCLK0::PUDCLK15::AssertClock);
arch::spin_for_cycles(150);
inner.GPPUDCLK0.set(0);
})
}
}
//--------------------------------------------------------------------------------------------------
// OS interface implementations
//--------------------------------------------------------------------------------------------------
impl interface::driver::DeviceDriver for GPIO {
fn compatible(&self) -> &str {
"GPIO"
}
}

@ -0,0 +1,332 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! PL011 UART driver.
use crate::{arch, arch::sync::NullLock, interface};
use core::{fmt, ops};
use register::{mmio::*, register_bitfields};
// PL011 UART registers.
//
// Descriptions taken from
// https://github.com/raspberrypi/documentation/files/1888662/BCM2837-ARM-Peripherals.-.Revised.-.V2-1.pdf
register_bitfields! {
u32,
/// Flag Register
FR [
/// Transmit FIFO empty. The meaning of this bit depends on the state of the FEN bit in the
/// Line Control Register, UARTLCR_ LCRH.
///
/// If the FIFO is disabled, this bit is set when the transmit holding register is empty. If
/// the FIFO is enabled, the TXFE bit is set when the transmit FIFO is empty. This bit does
/// not indicate if there is data in the transmit shift register.
TXFE OFFSET(7) NUMBITS(1) [],
/// Transmit FIFO full. The meaning of this bit depends on the state of the FEN bit in the
/// UARTLCR_ LCRH Register.
///
/// If the FIFO is disabled, this bit is set when the transmit holding register is full. If
/// the FIFO is enabled, the TXFF bit is set when the transmit FIFO is full.
TXFF OFFSET(5) NUMBITS(1) [],
/// Receive FIFO empty. The meaning of this bit depends on the state of the FEN bit in the
/// UARTLCR_H Register.
///
/// If the FIFO is disabled, this bit is set when the receive holding register is empty. If
/// the FIFO is enabled, the RXFE bit is set when the receive FIFO is empty.
RXFE OFFSET(4) NUMBITS(1) []
],
/// Integer Baud rate divisor
IBRD [
/// Integer Baud rate divisor
IBRD OFFSET(0) NUMBITS(16) []
],
/// Fractional Baud rate divisor
FBRD [
/// Fractional Baud rate divisor
FBRD OFFSET(0) NUMBITS(6) []
],
/// Line Control register
LCRH [
/// Word length. These bits indicate the number of data bits transmitted or received in a
/// frame.
WLEN OFFSET(5) NUMBITS(2) [
FiveBit = 0b00,
SixBit = 0b01,
SevenBit = 0b10,
EightBit = 0b11
],
/// Enable FIFOs:
///
/// 0 = FIFOs are disabled (character mode) that is, the FIFOs become 1-byte-deep holding
/// registers
///
/// 1 = transmit and receive FIFO buffers are enabled (FIFO mode).
FEN OFFSET(4) NUMBITS(1) [
FifosDisabled = 0,
FifosEnabled = 1
]
],
/// Control Register
CR [
/// Receive enable. If this bit is set to 1, the receive section of the UART is enabled.
/// Data reception occurs for UART signals. When the UART is disabled in the middle of
/// reception, it completes the current character before stopping.
RXE OFFSET(9) NUMBITS(1) [
Disabled = 0,
Enabled = 1
],
/// Transmit enable. If this bit is set to 1, the transmit section of the UART is enabled.
/// Data transmission occurs for UART signals. When the UART is disabled in the middle of
/// transmission, it completes the current character before stopping.
TXE OFFSET(8) NUMBITS(1) [
Disabled = 0,
Enabled = 1
],
/// UART enable
UARTEN OFFSET(0) NUMBITS(1) [
/// If the UART is disabled in the middle of transmission or reception, it completes the
/// current character before stopping.
Disabled = 0,
Enabled = 1
]
],
/// Interrupt Clear Register
ICR [
/// Meta field for all pending interrupts
ALL OFFSET(0) NUMBITS(11) []
]
}
#[allow(non_snake_case)]
#[repr(C)]
pub struct RegisterBlock {
DR: ReadWrite<u32>, // 0x00
__reserved_0: [u32; 5], // 0x04
FR: ReadOnly<u32, FR::Register>, // 0x18
__reserved_1: [u32; 2], // 0x1c
IBRD: WriteOnly<u32, IBRD::Register>, // 0x24
FBRD: WriteOnly<u32, FBRD::Register>, // 0x28
LCRH: WriteOnly<u32, LCRH::Register>, // 0x2C
CR: WriteOnly<u32, CR::Register>, // 0x30
__reserved_2: [u32; 4], // 0x34
ICR: WriteOnly<u32, ICR::Register>, // 0x44
}
/// The driver's mutex protected part.
struct PL011UartInner {
base_addr: usize,
chars_written: usize,
}
/// Deref to RegisterBlock.
///
/// Allows writing
/// ```
/// self.DR.read()
/// ```
/// instead of something along the lines of
/// ```
/// unsafe { (*PL011UartInner::ptr()).DR.read() }
/// ```
impl ops::Deref for PL011UartInner {
type Target = RegisterBlock;
fn deref(&self) -> &Self::Target {
unsafe { &*self.ptr() }
}
}
impl PL011UartInner {
const fn new(base_addr: usize) -> PL011UartInner {
PL011UartInner {
base_addr,
chars_written: 0,
}
}
/// Return a pointer to the register block.
fn ptr(&self) -> *const RegisterBlock {
self.base_addr as *const _
}
/// Send a character.
fn write_char(&mut self, c: char) {
// Wait until we can send.
loop {
if !self.FR.is_set(FR::TXFF) {
break;
}
arch::nop();
}
// Write the character to the buffer.
self.DR.set(c as u32);
}
}
/// Implementing `core::fmt::Write` enables usage of the `format_args!` macros, which in turn are
/// used to implement the `kernel`'s `print!` and `println!` macros. By implementing `write_str()`,
/// we get `write_fmt()` automatically.
///
/// The function takes an `&mut self`, so it must be implemented for the inner struct.
///
/// See [`src/print.rs`].
///
/// [`src/print.rs`]: ../../print/index.html
impl fmt::Write for PL011UartInner {
fn write_str(&mut self, s: &str) -> fmt::Result {
for c in s.chars() {
// Convert newline to carrige return + newline.
if c == '\n' {
self.write_char('\r')
}
self.write_char(c);
}
self.chars_written += s.len();
Ok(())
}
}
//--------------------------------------------------------------------------------------------------
// BSP-public
//--------------------------------------------------------------------------------------------------
/// The driver's main struct.
pub struct PL011Uart {
inner: NullLock<PL011UartInner>,
}
impl PL011Uart {
/// # Safety
///
/// The user must ensure to provide the correct `base_addr`.
pub const unsafe fn new(base_addr: usize) -> PL011Uart {
PL011Uart {
inner: NullLock::new(PL011UartInner::new(base_addr)),
}
}
}
//--------------------------------------------------------------------------------------------------
// OS interface implementations
//--------------------------------------------------------------------------------------------------
use interface::sync::Mutex;
impl interface::driver::DeviceDriver for PL011Uart {
fn compatible(&self) -> &str {
"PL011Uart"
}
/// Set up baud rate and characteristics
///
/// Results in 8N1 and 115200 baud (if the clk has been previously set to 4 MHz by the
/// firmware).
fn init(&self) -> interface::driver::Result {
let mut r = &self.inner;
r.lock(|inner| {
// Turn it off temporarily.
inner.CR.set(0);
inner.ICR.write(ICR::ALL::CLEAR);
inner.IBRD.write(IBRD::IBRD.val(26)); // Results in 115200 baud for UART Clk of 48 MHz.
inner.FBRD.write(FBRD::FBRD.val(3));
inner
.LCRH
.write(LCRH::WLEN::EightBit + LCRH::FEN::FifosEnabled); // 8N1 + Fifo on
inner
.CR
.write(CR::UARTEN::Enabled + CR::TXE::Enabled + CR::RXE::Enabled);
});
Ok(())
}
}
impl interface::console::Write for PL011Uart {
/// Passthrough of `args` to the `core::fmt::Write` implementation, but guarded by a Mutex to
/// serialize access.
fn write_char(&self, c: char) {
let mut r = &self.inner;
r.lock(|inner| inner.write_char(c));
}
fn write_fmt(&self, args: core::fmt::Arguments) -> fmt::Result {
// Fully qualified syntax for the call to `core::fmt::Write::write:fmt()` to increase
// readability.
let mut r = &self.inner;
r.lock(|inner| fmt::Write::write_fmt(inner, args))
}
fn flush(&self) {
let mut r = &self.inner;
// Spin until the TX FIFO empty flag is set.
r.lock(|inner| loop {
if inner.FR.is_set(FR::TXFE) {
break;
}
arch::nop();
});
}
}
impl interface::console::Read for PL011Uart {
fn read_char(&self) -> char {
let mut r = &self.inner;
r.lock(|inner| {
// Wait until buffer is filled.
loop {
if !inner.FR.is_set(FR::RXFE) {
break;
}
arch::nop();
}
// Read one character.
let mut ret = inner.DR.get() as u8 as char;
// Convert carrige return to newline.
if ret == '\r' {
ret = '\n'
}
ret
})
}
fn clear(&self) {
let mut r = &self.inner;
r.lock(|inner| loop {
// Read from the RX FIFO until the empty bit is '1'.
if !inner.FR.is_set(FR::RXFE) {
inner.DR.get();
} else {
break;
}
})
}
}
impl interface::console::Statistics for PL011Uart {
fn chars_written(&self) -> usize {
let mut r = &self.inner;
r.lock(|inner| inner.chars_written)
}
}

@ -0,0 +1,58 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Board Support Package for the Raspberry Pi.
mod memory_map;
use super::driver;
use crate::interface;
pub const BOOT_CORE_ID: u64 = 0;
pub const BOOT_CORE_STACK_START: u64 = 0x80_000;
//--------------------------------------------------------------------------------------------------
// Global BSP driver instances
//--------------------------------------------------------------------------------------------------
static GPIO: driver::GPIO = unsafe { driver::GPIO::new(memory_map::mmio::GPIO_BASE) };
static PL011_UART: driver::PL011Uart =
unsafe { driver::PL011Uart::new(memory_map::mmio::PL011_UART_BASE) };
//--------------------------------------------------------------------------------------------------
// Implementation of the kernel's BSP calls
//--------------------------------------------------------------------------------------------------
/// Board identification.
pub fn board_name() -> &'static str {
#[cfg(feature = "bsp_rpi3")]
{
"Raspberry Pi 3"
}
#[cfg(feature = "bsp_rpi4")]
{
"Raspberry Pi 4"
}
}
/// Return a reference to a `console::All` implementation.
pub fn console() -> &'static impl interface::console::All {
&PL011_UART
}
/// Return an array of references to all `DeviceDriver` compatible `BSP` drivers.
///
/// # Safety
///
/// The order of devices is the order in which `DeviceDriver::init()` is called.
pub fn device_drivers() -> [&'static dyn interface::driver::DeviceDriver; 2] {
[&GPIO, &PL011_UART]
}
/// BSP initialization code that runs after driver init.
pub fn post_driver_init() {
// Configure PL011Uart's output pins.
GPIO.map_pl011_uart();
}

@ -0,0 +1,35 @@
/* SPDX-License-Identifier: MIT
*
* Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
*/
SECTIONS
{
/* Set current address to the value from which the RPi starts execution */
. = 0x80000;
.text :
{
*(.text._start) *(.text*)
}
.rodata :
{
*(.rodata*)
}
.data :
{
*(.data*)
}
/* Align to 8 byte boundary */
.bss ALIGN(8):
{
__bss_start = .;
*(.bss*);
__bss_end = .;
}
/DISCARD/ : { *(.comment*) }
}

@ -0,0 +1,18 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! The board's memory map.
/// Physical devices.
#[rustfmt::skip]
pub mod mmio {
#[cfg(feature = "bsp_rpi3")]
pub const BASE: usize = 0x3F00_0000;
#[cfg(feature = "bsp_rpi4")]
pub const BASE: usize = 0xFE00_0000;
pub const GPIO_BASE: usize = BASE + 0x0020_0000;
pub const PL011_UART_BASE: usize = BASE + 0x0020_1000;
}

@ -0,0 +1,129 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Trait definitions for coupling `kernel` and `BSP` code.
//!
//! ```
//! +-------------------+
//! | Interface (Trait) |
//! | |
//! +--+-------------+--+
//! ^ ^
//! | |
//! | |
//! +----------+--+ +--+----------+
//! | Kernel code | | BSP Code |
//! | | | |
//! +-------------+ +-------------+
//! ```
/// System console operations.
pub mod console {
use core::fmt;
/// Console write functions.
pub trait Write {
fn write_char(&self, c: char);
fn write_fmt(&self, args: fmt::Arguments) -> fmt::Result;
/// Block execution until the last character has been physically put on the TX wire
/// (draining TX buffers/FIFOs, if any).
fn flush(&self);
}
/// Console read functions.
pub trait Read {
fn read_char(&self) -> char {
' '
}
/// Clear RX buffers, if any.
fn clear(&self);
}
/// Console statistics.
pub trait Statistics {
/// Return the number of characters written.
fn chars_written(&self) -> usize {
0
}
/// Return the number of characters read.
fn chars_read(&self) -> usize {
0
}
}
/// Trait alias for a full-fledged console.
pub trait All = Write + Read + Statistics;
}
/// Synchronization primitives.
pub mod sync {
/// Any object implementing this trait guarantees exclusive access to the data contained within
/// the mutex for the duration of the lock.
///
/// The trait follows the [Rust embedded WG's
/// proposal](https://github.com/korken89/wg/blob/master/rfcs/0377-mutex-trait.md) and therefore
/// provides some goodness such as [deadlock
/// prevention](https://github.com/korken89/wg/blob/master/rfcs/0377-mutex-trait.md#design-decisions-and-compatibility).
///
/// # Example
///
/// Since the lock function takes an `&mut self` to enable deadlock-prevention, the trait is
/// best implemented **for a reference to a container struct**, and has a usage pattern that
/// might feel strange at first:
///
/// ```
/// static MUT: Mutex<RefCell<i32>> = Mutex::new(RefCell::new(0));
///
/// fn foo() {
/// let mut r = &MUT; // Note that r is mutable
/// r.lock(|data| *data += 1);
/// }
/// ```
pub trait Mutex {
/// Type of data encapsulated by the mutex.
type Data;
/// Creates a critical section and grants temporary mutable access to the encapsulated data.
fn lock<R>(&mut self, f: impl FnOnce(&mut Self::Data) -> R) -> R;
}
}
/// Driver interfaces.
pub mod driver {
/// Driver result type, e.g. for indicating successful driver init.
pub type Result = core::result::Result<(), ()>;
/// Device Driver functions.
pub trait DeviceDriver {
/// Return a compatibility string for identifying the driver.
fn compatible(&self) -> &str;
/// Called by the kernel to bring up the device.
fn init(&self) -> Result {
Ok(())
}
}
}
/// Timekeeping interfaces.
pub mod time {
use core::time::Duration;
/// Timer functions.
pub trait Timer {
/// The timer's resolution.
fn resolution(&self) -> Duration;
/// The uptime since power-on of the device.
///
/// This includes time consumed by firmware and bootloaders.
fn uptime(&self) -> Duration;
/// Spin for a given duration.
fn spin_for(&self, duration: Duration);
}
}

@ -0,0 +1,97 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
// Rust embedded logo for `make doc`.
#![doc(html_logo_url = "https://git.io/JeGIp")]
//! The `kernel`
//!
//! The `kernel` is composed by glueing together code from
//!
//! - [Hardware-specific Board Support Packages] (`BSPs`).
//! - [Architecture-specific code].
//! - HW- and architecture-agnostic `kernel` code.
//!
//! using the [`kernel::interface`] traits.
//!
//! [Hardware-specific Board Support Packages]: bsp/index.html
//! [Architecture-specific code]: arch/index.html
//! [`kernel::interface`]: interface/index.html
#![feature(format_args_nl)]
#![feature(panic_info_message)]
#![feature(trait_alias)]
#![no_main]
#![no_std]
// Conditionally includes the selected `architecture` code, which provides the `_start()` function,
// the first function to run.
mod arch;
// `_start()` then calls `runtime_init::init()`, which on completion, jumps to `kernel_init()`.
mod runtime_init;
// Conditionally includes the selected `BSP` code.
mod bsp;
mod interface;
mod panic_wait;
mod print;
/// Early init code.
///
/// Concerned with with initializing `BSP` and `arch` parts.
///
/// # Safety
///
/// - Only a single core must be active and running this function.
/// - The init calls in this function must appear in the correct order.
unsafe fn kernel_init() -> ! {
for i in bsp::device_drivers().iter() {
if let Err(()) = i.init() {
// This message will only be readable if, at the time of failure, the return value of
// `bsp::console()` is already in functioning state.
panic!("Error loading driver: {}", i.compatible())
}
}
bsp::post_driver_init();
// Transition from unsafe to safe.
kernel_main()
}
/// The main function running after the early init.
fn kernel_main() -> ! {
use core::time::Duration;
use interface::{console::All, time::Timer};
println!("Booting on: {}", bsp::board_name());
println!(
"Current privilege level: {}",
arch::state::current_privilege_level()
);
println!("Exception handling state:");
arch::state::print_exception_state();
println!(
"Architectural timer resolution: {} ns",
arch::timer().resolution().as_nanos()
);
println!("Drivers loaded:");
for (i, driver) in bsp::device_drivers().iter().enumerate() {
println!(" {}. {}", i + 1, driver.compatible());
}
println!("Timer test, spinning for 1 second");
arch::timer().spin_for(Duration::from_secs(1));
println!("Echoing input now");
loop {
let c = bsp::console().read_char();
bsp::console().write_char(c);
}
}

@ -0,0 +1,19 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! A panic handler that infinitely waits.
use crate::{arch, println};
use core::panic::PanicInfo;
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
if let Some(args) = info.message() {
println!("Kernel panic: {}", args);
} else {
println!("Kernel panic!");
}
arch::wait_forever()
}

@ -0,0 +1,91 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Printing facilities.
use crate::{bsp, interface};
use core::fmt;
/// Prints without a newline.
///
/// Carbon copy from https://doc.rust-lang.org/src/std/macros.rs.html
#[macro_export]
macro_rules! print {
($($arg:tt)*) => ($crate::print::_print(format_args!($($arg)*)));
}
/// Prints with a newline.
#[macro_export]
macro_rules! println {
() => ($crate::print!("\n"));
($string:expr) => ({
#[allow(unused_imports)]
use crate::interface::time::Timer;
let timestamp = $crate::arch::timer().uptime();
let timestamp_subsec_us = timestamp.subsec_micros();
$crate::print::_print(format_args_nl!(
concat!("[ {:>3}.{:03}{:03}] ", $string),
timestamp.as_secs(),
timestamp_subsec_us / 1_000,
timestamp_subsec_us % 1_000
));
});
($format_string:expr, $($arg:tt)*) => ({
#[allow(unused_imports)]
use crate::interface::time::Timer;
let timestamp = $crate::arch::timer().uptime();
let timestamp_subsec_us = timestamp.subsec_micros();
$crate::print::_print(format_args_nl!(
concat!("[ {:>3}.{:03}{:03}] ", $format_string),
timestamp.as_secs(),
timestamp_subsec_us / 1_000,
timestamp_subsec_us % 1_000,
$($arg)*
));
})
}
/// Prints a warning, with newline.
#[macro_export]
macro_rules! warn {
($string:expr) => ({
#[allow(unused_imports)]
use crate::interface::time::Timer;
let timestamp = $crate::arch::timer().uptime();
let timestamp_subsec_us = timestamp.subsec_micros();
$crate::print::_print(format_args_nl!(
concat!("[W {:>3}.{:03}{:03}] ", $string),
timestamp.as_secs(),
timestamp_subsec_us / 1_000,
timestamp_subsec_us % 1_000
));
});
($format_string:expr, $($arg:tt)*) => ({
#[allow(unused_imports)]
use crate::interface::time::Timer;
let timestamp = $crate::arch::timer().uptime();
let timestamp_subsec_us = timestamp.subsec_micros();
$crate::print::_print(format_args_nl!(
concat!("[W {:>3}.{:03}{:03}] ", $format_string),
timestamp.as_secs(),
timestamp_subsec_us / 1_000,
timestamp_subsec_us % 1_000,
$($arg)*
));
})
}
pub fn _print(args: fmt::Arguments) {
use interface::console::Write;
bsp::console().write_fmt(args).unwrap();
}

@ -0,0 +1,24 @@
// SPDX-License-Identifier: MIT
//
// Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
//! Rust runtime initialization code.
/// Equivalent to `crt0` or `c0` code in C/C++ world. Clears the `bss` section, then jumps to kernel
/// init code.
///
/// # Safety
///
/// - Only a single core must be active and running this function.
pub unsafe fn init() -> ! {
extern "C" {
// Boundaries of the .bss section, provided by the linker script.
static mut __bss_start: u64;
static mut __bss_end: u64;
}
// Zero out the .bss section.
r0::zero_bss(&mut __bss_start, &mut __bss_end);
crate::kernel_init()
}
Loading…
Cancel
Save